Skip to main content
Log in

Abstract

SHS in 3Si–SiO2nAdd mixtures, where Add = FeCl3⋅6H2O or Fe2(C2O4)3⋅5H2O and n = 0.015–0.09 М, under 10 MPa of nitrogen gas was studied by XRD, SEM/EDS, and chemical analysis. The addition of gasifying salts decreased combustion temperature and improved phase composition of combustion products. In case of FeCl3⋅6H2O and n = 0.09 М, total yield of silicon oxynitrides Si2N2.2O0.8 and Si2N2O attained a value of 94 wt %, due to the presence of added iron. Crystal structure of the earlier unknown Si2N2.2O0.8 phase detected in combustion products derived from 3Si–SiO2nFeCl3⋅6H2O mixtures was established by XRD analysis and crystallographic modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Li, X., Zhang, L., and Yin, X., Study on in-situ reaction synthesis and mechanical properties of Si2N2O ceramic, Ceram. Int., 2013, vol. 39, pp. 3035–3041. https://doi.org/10.1016/j.ceramint.2012.09.082

    Article  CAS  Google Scholar 

  2. Wu, S. and Li, X., In-situ reactive synthesis of Si2N2O ceramics and its properties, Metall. Mater. Trans. A, 2012, vol. 43, no. 12, pp. 4859–4864. https://doi.org/10.1007/s11661-012-1254-x

    Article  CAS  Google Scholar 

  3. Lewis, M.H., Reed, C.J., and Butler, N.D., Pressureless-sintered ceramics based on the compound Si2N2O, Mater. Sci. Eng., 1985, vol. 71, no. 1, pp. 87–94. https://doi.org/10.1016/0025-5416(85)90210-1

    Article  CAS  Google Scholar 

  4. Larker, R., Reaction sintering and properties of silicon oxynitride densified by hot isostatic pressing, J. Am. Ceram. Soc., 1992, vol. 75, no. 1, pp. 62–66. https://doi.org/10.1111/j.1151-2916.1992.tb05442.x

    Article  CAS  Google Scholar 

  5. Radwan, M., Kashiwagi, T., and Miyamoto, Y., New synthesis route for Si2N2O ceramics based on desert sand, J. Eur. Ceram. Soc., 2003, vol. 23, no. 13, pp. 2337–2341. https://doi.org/10.1016/S0955-2219(03)00040-2

    Article  CAS  Google Scholar 

  6. Studenikin, I.A. and Grachev, V.V., Synthesis of silicon oxynitride by infiltration-mediated combustion, Int. J. Self-Propag. High-Temp. Synth., 2008, vol. 17, no. 4, pp. 237–241. https://doi.org/10.3103/S106138620804006/2

    Article  CAS  Google Scholar 

  7. Rocabois, P., Chatillon, C., and Bernard, J., Thermodynamics of the Si–O–N system: Stability of Si2N2O(s) by high-temperature study mass spectrometry vaporization, J. Am. Ceram. Soc., 1996, vol. 79, no. 5, pp. 1361–1365. https://doi.org/10.1111/j.1151-2916.1996.tb08597.x

    Article  CAS  Google Scholar 

  8. Barinova, T.V., Barinov, V.Yu., Kovalev, I.D., and Scheck, Yu.B., SHS of pure Si2N2O 2D-nanopowder, Int. J. Self-Propag. High-Temp. Synth., 2019, vol. 28, no. 3, pp. 179–182. https://doi.org/10.3103/S106138621903004X

    Article  CAS  Google Scholar 

  9. https://bourevestnik.com/production/x-ray-diffraction-analysis.

  10. Macrae, C.F., Bruno, I.J., Chisholm, J.A., Edgington, P.R., McCabe, P., Pidcock, T., Rodriguez-Monge, L., Taylor, R., Van de Streek, J., and Wood, P.A., Mercury CSD: New features for the visualization and investigation of crystal structures, J. Appl. Crystallogr., 2008. vol. 41, pp. 466–470. https://doi.org/10.1107/S0021889807067908

    Article  CAS  Google Scholar 

  11. Barinova, T.V., Borovinskaya, I.P., Barinov, Yu.N., Kovalev, I.D., and Shchukin, A.S., Polycrystalline silicon nitride fibers by SHS: Impact of ammonium acetate and ferric chloride additives, Int. J. Self-Propag. High-Temp. Synth., 2018, vol. 27, no. 2, pp. 92–97. https://doi.org/10.3103/S106138621802005X

    Article  CAS  Google Scholar 

  12. International Centre for Diffraction Data, Joint Committee on Powder Diffraction Standards (JCPDS). http://www.icdd.com/.

  13. Bowden, M.E., Barris, G.C., Brown, I.W.M., Jefferson, D.A., A new, low-temperature polymorph of Ó-SiAlON, J. Am. Ceram. Soc., 1998. vol. 81, no. 8, pp. 2188–2190. https://doi.org/10.1111/j.1151-2916.1998.tb02605.x

    Article  CAS  Google Scholar 

  14. Slater, J.C., Atomic radii in crystals, J. Chem. Phys., 1964, vol. 41, no. 10, pp. 3199–3205. https://doi.org/10.1063/1.1725697

    Article  CAS  Google Scholar 

  15. Billy, M., Labbe, J.C., Selvaraj, A., and Roult, G., Modifications structurales du nitrure de silicium en fonction de la temperature, Mater. Res. Bull., 1983, vol. 18, pp. 921–934. https://doi.org/10.1016/0025-5408(83)90003-X

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. V. Barinova, D. Yu. Kovalev or S. V. Konovalikhin.

Additional information

Translated by Yu. Scheck

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barinova, T.V., Kovalev, D.Y. & Konovalikhin, S.V. SHS in the Si–N–O System Containing Iron Salts. Int. J Self-Propag. High-Temp. Synth. 30, 65–72 (2021). https://doi.org/10.3103/S1061386221020035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386221020035

Navigation