Skip to main content
Log in

Thin Zn1 – xMnxO Films (x = 1–4 at %) by Chemical Bath Deposition: Influence of Dopant Concentration

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

Thin films of Zn1–xMnxO (x = 1–4 at %) were applied onto a glass substrate by low-cost chemical bath deposition (CBD). The films were characterized by XRD, UV–VIS absorption spectra, SEM, and vibrating sample magnetometry—with special emphasis on the influence of dopant concentration x. Structural and optical properties of deposited films imply that the Mn2+ ions substituted Zn2+ ions without changing the wurtzite structure of ZnO. No impurity phases were detected in XRD patterns. The band gap in ZnO was found to increase with increasing x. Magnetic measurements showed that Mn-doped ZnO samples exhibited ferromagnetic behavior at room temperature, which tentatively was associated with the replacement of Zn2+ ions by Mn2+ ions in the ZnO lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Kazakova, O., van der Meulen, M.I., Petkov, N., and Holmes, J.D., Magnetic properties of single crystalline Ge1–xMnx nanowires, IEEE Trans. Magn., 2009, vol. 45, no. 10, pp. 4085–4088. https://doi.org/10.1109/TMAG.2009.2023073

    Article  CAS  Google Scholar 

  2. Nasir, A., Vijaya, A.R., Zahir, A.K., Tarafder, K., Kumar, A., Wadhwa, M.K., Singh, B., and Ghosh, S., Ferromagnetism from non-magnetic ions: Ag-doped ZnO, Sci. Rep., 2019, vol. 9, 20039. https://doi.org/10.1038/s41598-019-56568-8

    Article  CAS  Google Scholar 

  3. Shatnawi, M., Alsmadi, A.M., Bsoul, I., Salameh, B., Mathai, M., Alnawashi, G., Alzoubi, G.M., Al-Dweri, F., and Bawa’aneh, M.S., Influence of Mn doping on the magnetic and optical properties of ZnO nanocrystalline particles, Res. Phys., 2016, vol. 6, pp. 1064–1071. https://doi.org/10.1016/j.rinp.2016.11.041

    Article  Google Scholar 

  4. Yuan, K., Yu, Q.X., Gao, Q.Q., Wang, J., and Zhang, X.T., A threshold of Vo+/Vo++ to room temperature ferromagnetism of hydrogenated Mn doped ZnO nanoparticles, Appl. Surf. Sci., 2012, vol. 258, no. 8, pp. 3350–3353. https://doi.org/10.1016/j.apsusc.2011.08.080

    Article  CAS  Google Scholar 

  5. Vinod, R., Junaid Bushiri, M., Sajan, P., Achary, S.R., and Sanjose, V.M., Mn2+-induced room-temperature ferromagnetism and spin-glass behavior in hydrothermally grown Mn-doped ZnO nanorods, Phys. Status Solidi A, 2014, vol. 211, no. 5, pp. 1155–1161. https://doi.org/10.1002/pssa.201330394

    Article  CAS  Google Scholar 

  6. Wojnarowicz, J., Omelchenko, M., Szczytko, J., Chudoba, T., Gierlotka, S., Majhofer, A., Twardowski, A., and Lojkowski, W., Structural and magnetic properties of Co‒Mn codoped ZnO nanoparticles obtained by microwave solvothermal synthesis, Crystals, 2018, vol. 8, no. 11, 410. https://doi.org/10.3390/cryst8110410

    Article  CAS  Google Scholar 

  7. Yan, H.L., Zhong, X.L., Wang, J.B., Huang, G.J., Ding, S.L., Zhou, G.C., and Zhou, Y.C., Cathodoluminescence and room temperature ferromagnetism of Mn-doped ZnO nanorod arrays grown by chemical vapor deposition, Appl. Phys. Lett., 2007, vol. 90, no. 8, 082503. https://doi.org/10.1063/1.2460297

    Article  CAS  Google Scholar 

  8. Droubay, T.C., Keavney, D.J., Kaspar, T.C., Heald, S.M., Wang, C.M., Johnson, C.A., Whitaker, M., Gamelin, D.R., and Chambers, S.A., Correlated substitution in paramagnetic Mn2+-doped ZnO epitaxial films, Phys. Rev. B, 2009, vol. 79, no. 15, pp.155203–155208. https://doi.org/10.1103/PhysRevB.79.155203

    Article  CAS  Google Scholar 

  9. Kluth, O., Schope, G., Hupkes, J., Agashe, C., Muller, J., and Rech, B., Modified Thornton model for magnetron sputtered zinc oxide: Film structure and etching behavior, Thin Solid Films, 2003, vol. 442, nos. 1–2, pp. 80–85. https://doi.org/10.1016/S0040-6090(03)00949-0

    Article  CAS  Google Scholar 

  10. Huang M.H., Mao S., Feick H., Yan H., Wu Y., Kind H., Weber E., Russo R., and Yang P., Room-temperature ultraviolet nanowire nanolasers, Science, 2001, vol. 292, no. 5523, pp. 1897–1899, https://doi.org/10.1126/science.1060367

    Article  CAS  Google Scholar 

  11. Maiti, U.N., Ghosh, P.K., Nandy, S., and Chattopadhyay, K.K., Effect of Mn doping on the optical and structural properties of ZnO nano/micro-fibrous thin film synthesized by sol–gel technique, Physica B: Condens. Matter, 2007, vol. 387, nos. 1–2, pp. 103–108. https://doi.org/10.1016/j.physb.2006.03.090

    Article  CAS  Google Scholar 

  12. Lu, J.G., Huang, K., Zhu, J.B., Chen, X.M., Song, X.P., and Sun, Z.Q., Preparation and characterization of Na-doped ZnO thin films by sol–gel method, Physica B, 2010, vol. 405, no. 15, pp. 3167–3171. https://doi.org/10.1016/j.physb.2010.04.045

    Article  CAS  Google Scholar 

  13. Yılmaz, S., McGlynn, E., Bacaksız, E., Ozcan, Ş., Byrne, D., Henry, M.O., and Chellappan, R.K., Effects of Cu diffusion-doping on structural, optical, and magnetic properties of ZnO nanorod arrays grown by vapor phase transport method, Appl. Phys., 2012, vol. 111, no. 1, pp. 013903-013905. https://doi.org/10.1063/1.3673861

    Article  CAS  Google Scholar 

  14. Yılmaz, S., Bacaksız, E., McGlynn, E., Polat, İ., and Ozcan, Ş., Structural, optical and magnetic properties of Zn1–xMnxO micro-rod arrays synthesized by spray pyrolysis method, Thin Solid Films, 2012, vol. 520, no. 16, pp. 5172–5178. https://doi.org/10.1016/j.tsf.2012.04.002

    Article  CAS  Google Scholar 

  15. Yan, X., Ho, D., Li, H., Li, L., Chong, X., and Wang, Y., Nanostructure and optical properties of M doped ZnO (M = Ni, Mn) thin films prepared by sol–gel process, Physica B: Condens. Matter, 2011, vol. 406, no. 20, pp. 3956–3962. https://doi.org/10.1016/j.physb.2011.07.037

    Article  CAS  Google Scholar 

  16. Yang, S. and Zhang, Y., Structural, optical and magnetic properties of Mn-doped ZnO thin films prepared by sol–gel method, J. Magn. Magn. Mater., 2013, vol. 334, pp. 52–58. https://doi.org/10.1016/j.jmmm.2013.01.026

    Article  CAS  Google Scholar 

  17. Lee, J.H., Ko, K.H., and Park, B.O., Electrical and optical properties of ZnO transparent conducting films by the sol–gel method, J. Cryst. Growth, 2003, vol. 247, nos. 1–2, pp. 119–125. https://doi.org/10.1016/S0022-0248(02)01907-3

    Article  CAS  Google Scholar 

  18. Deka, S. and Joy, P.A., Synthesis and magnetic properties of Mn doped ZnO nanowires, Solid State Commun., 2007, vol. 142, no. 4, pp. 190–194. https://doi.org/10.1016/j.ssc.2007.02.017

    Article  CAS  Google Scholar 

  19. Hao, Y.M., Lou, S.Y., Zhou, S.M., Yuan, R.J., Zhu, G.Y., and Hao, N.L., Fabrication and characterization of Mn-doped CuO thin films by the SILAR method, Nanoscale Res. Lett., 2012, vol. 7, p. 100. https://doi.org/10.1186/1556-276X-7-100

    Article  CAS  Google Scholar 

  20. Gulen, Y., Bayansal, F., Sahin, B., Cetinkara, H.A., and Guder, H.S., Fabrication and characterization of Mn-doped CuO thin films by the SILAR method, Ceram. Int., 2013, vol. 39, no. 6, pp. 6475–6480. https://doi.org/10.1016/j.ceramint.2013.01.077

    Article  CAS  Google Scholar 

  21. Kharroubi, B., Baghdad, R., Abdiche, A., Bousmaha, M., Bousquet, M., Zeinert, A., Marssi, M.E., Zellama, K., and Hamzaoui, S., Mn doping effect on the structural properties of ZnO-nanostructured films deposited by the ultrasonic spray pyrolysis method, Phys. Scr., 2007, vol. 86, no. 1, 015805. https://doi.org/10.1088/0031-8949/86/01/015805

    Article  CAS  Google Scholar 

  22. Sakai, K., Kakeno, T., Ikari, A., Shirakata, S., Sakemi, T., Awai, K., and Yamamoto, T., Defect centers and optical absorption edge of degenerated semiconductor ZnO thin films grown by a reactive plasma deposition by means of piezoelectric photothermal spectroscopy, J. Appl. Phys., 2006, vol. 99, no. 4, 043508. https://doi.org/10.1063/1.2173040

    Article  CAS  Google Scholar 

  23. Rekha, K., Nirmala, M., Nair, M., and Anukaliani, A., Structural, optical, photocatalytic and antibacterial activity of zinc oxide and manganese doped zinc oxide nanoparticles, Physica B, 2010, vol. 405, no. 15, pp. 3180–3185. https://doi.org/10.1016/j.physb.2010.04.042

    Article  CAS  Google Scholar 

  24. Arvind, A., Jayara, M.K., Kumar, M., and Chandra, R., Structural, optical and magnetic properties of Mn doped ZnO thin films prepared by pulsed laser deposition, Mater. Sci. Eng., B, 2012, vol. 177, no. 13, pp. 1017–1020. https://doi.org/10.1016/j.mseb.2012.05.005

    Article  CAS  Google Scholar 

  25. Diaconu, M., Schmidt, H., Hochmuth, H., Lorenz, M., Benndorf, G., Lenzer, J., Spemann, D., Setzer, A., Nielsen, K.W., Esquinazi, P., and Grundmann, M., UV optical properties of ferromagnetic Mn-doped ZnO thin films grown by PLD, Thin Solid Films, 2005, vol. 486, nos. 1–2, pp. 117–121. https://doi.org/10.1016/j.tsf.2004.11.211

    Article  CAS  Google Scholar 

  26. Theodoropoulou, N., Misra, V., Philip, J., Leclair, P., Berera, G.P., Moodera, J.S., Satpati, B., and Som, T., High-temperature ferromagnetism in Zn1–xMnxO semiconductor thin films, J. Magn. Magn. Mater., 2006, vol. 300, no. 2, pp. 407–411. https://doi.org/10.1016/j.jmmm.2005.05.039

    Article  CAS  Google Scholar 

  27. Sharma, P., Gupta, A., Rao, K.V., Owens, F.J., Sharma, R., Ahuja, R., Guillen, J.M.O., Johansson, B., and Gehring, G.A., Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO, Nat. Mater., 2003, vol. 2, pp. 673–677. https://doi.org/10.1038/nmat984

    Article  CAS  Google Scholar 

  28. Baik, J.M. and Lee, J.L., Fabrication of vertically well-aligned (Zn,Mn)O nanorods with room temperature ferromagnetism, Adv. Mater., 2005, vol. 17, no. 22, pp. 2745–2748. https://doi.org/10.1002/adma.200500776

    Article  CAS  Google Scholar 

  29. Ruderman, M.A. and Kittel, C., Indirect exchange coupling of nuclear magnetic moments by conduction electrons, Phys. Rev., 1954, vol. 96, pp. 99–102. https://doi.org/10.1103/PhysRev.96.99

    Article  CAS  Google Scholar 

  30. Lin, Y.B., Xu, J.P., Zou, W.Q., Lu, L.Y., Lu, Z.H., Zhang, F.M., Du, Y.W., Huang, Z.G., and Zheng, J.G., Effects of annealing and hydrogenation on the properties of ZnMnO polycrystalline films synthesized by plasma enhanced chemical vapor deposition, J. Phys. D: Appl. Phys., 2007, vol. 40, no. 12, 3674. https://doi.org/10.1088/0022-3727/40/12/019

    Article  CAS  Google Scholar 

  31. Theodoropoulou, N., Misra, V., Philip, J., Leclair, P., Berera, G.P., Moodera, J.S., Satpati, B., and Som, T., High-temperature ferromagnetism in Zn1 − xMnxO semiconductor thin films, J. Magn. Magn. Mater., 2006, vol. 300, no. 2, pp. 407–411. https://doi.org/10.1016/j.jmmm.2005.05.039

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Shelar.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, G.R., Shelar, M.B., Kambale, N.J. et al. Thin Zn1 – xMnxO Films (x = 1–4 at %) by Chemical Bath Deposition: Influence of Dopant Concentration. Int. J Self-Propag. High-Temp. Synth. 30, 100–105 (2021). https://doi.org/10.3103/S1061386221020096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386221020096

Keywords:

Navigation