Skip to main content
Log in

New Design of a Magnetometer Based on Nuclear Magnetic Resonance to Study Variations of the Mid-field Magnetic Strength

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The necessity to develop a magnetometer for variations research in the mid-field magnetic strength with a relative error of 10–6 is justified. A new design of nuclear magnetometer which uses maser with flowing liquid is proposed. The block diagram of the magnetometer is presented, and the principle of its operation is described in detail. Furthermore, the conditions of occurrence of maser generation are established. The measurement errors of magnetic field variations in the developed magnetometer design are calculated. The capabilities of the developed magnetometer are determined. Finally, the results of experimental investigations of various variations of magnetic fields are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.P. Ledbetter, S. Pustelny, D. Budker, J.W. Blanchard, A. Pines, Phys Rev Lett 108(24), 243001 (2012)

    Article  ADS  Google Scholar 

  2. B. Gizatullin, M. Gafuro, A. Vakhi, C. Mattea, S. Stapf, Energy Fuels 33(11), 10923–10932 (2019)

    Article  Google Scholar 

  3. A.S. Alexandro, A.A. Ivanov, R.V. Archipov, M.R. Gafurov, M.S. Tagirov, Magn Resonan Solids 21(2), 19203 (2019)

    Google Scholar 

  4. N. Myazin, Y. Neronov, V. Dudkin, V. Davydov, V. Yushkova, MATEC Web Conf 245, 11013 (2018)

    Article  Google Scholar 

  5. S. Xu, C.W. Crawford, S. Rochester, D. Budker, A. Pines, Phys Rev A 78(1), 013404 (2008)

    Article  ADS  Google Scholar 

  6. V.V. Davydov, E.N. Velichko, V.I. Dudkin, A.Y. Karseev, Meas. Tech. 57(6), 684–689 (2014)

    Article  Google Scholar 

  7. A.K. Dmitriev, H.Y. Chen, G.D. Fuchs, A.K. Vershovskii, Phys Rev A 100(1), 011801 (2019)

    Article  ADS  Google Scholar 

  8. C. Abel, G. Bison, W.C. Griffith, W. Heil, D. Pais, J. Voigt, Eur Phys J D 73(7), 150 (2019)

    Article  ADS  Google Scholar 

  9. F. Allmendinger, I. Engin, W. Heil, U. Schmidt, S. Zimmer, Phys Rev A 100(2), 022505 (2019)

    Article  ADS  Google Scholar 

  10. F. Allmendinger, P. Blümler, M. Doll, W. Heil, L. Willmann, S. Zimmer, Eur Phys J D 71(4), 98 (2017)

    Article  ADS  Google Scholar 

  11. D.J. Michalak, S. Xu, T.J. Lowery, D. Budker, A. Pines, Magn. Reson. Med. 66(2), 603–606 (2011)

    Article  Google Scholar 

  12. H.B. Dang, A.C. Maloof, M.V. Romalis, Appl Phys Lett 97(15), 151110 (2010)

    Article  ADS  Google Scholar 

  13. A.K. Vershovskii, A.S. Pazgalev, Tech. Phys. 53(5), 646–654 (2008)

    Article  Google Scholar 

  14. D. Budker, M. Romalis, Optic Magn Nat Phys 3(4), 227–234 (2007)

    Article  Google Scholar 

  15. H.-G. Koch, G. Bison, Z.D. Grujić, W. Heil, J. Voigt, A. Weis, Eur Phys J D 71(10), 262 (2017)

    Article  ADS  Google Scholar 

  16. H.-G. Koch, G. Bison, Z.D. Grujić, W. Heil, J. Voigt, A. Weis, Eur Phys J D 69(8), 202 (2015)

    Article  ADS  Google Scholar 

  17. P.M. Borodin, N.M. Vecherukhin, A.V. Mel’nikov, A.A. Morozov, Tech. Phys. 41(3), 245–249 (1996)

    Google Scholar 

  18. R.J. Cooper, D.W. Prescott, P. Matz, M. Monti, J. Okamitsu, Phys Rev Appl 6(6), 064014 (2016)

    Article  ADS  Google Scholar 

  19. Y. Dumeige, M. Chipaux, V. Jacques, P. Kehayias, D. Budker, Phys Rev B 87(15), 155202 (2013)

    Article  ADS  Google Scholar 

  20. S.P. Dmitriev, A.S. Pazgalev, M.V. Petrenko, A.K. Vershovskii, Opt. Spectrosc. 127(4), 742–745 (2019)

    Article  ADS  Google Scholar 

  21. G. Romer, Arch Sci 14, 273–286 (1961)

    Google Scholar 

  22. H. Benoit, P. Friver, L. Guibe, Comptus Rendus 246, 3608–3614 (1958)

    Google Scholar 

  23. R.A. Zhitnikov, I.A. Kravtsov, Soviet Phys 22(3), 381–384 (1977)

    Google Scholar 

  24. V.V. Davydov, V.I. Dudkin, A.Y. Karseev, Tech. Phys. 60(3), 456–460 (2015)

    Article  Google Scholar 

  25. S.V. D’yachenko, I.S. Kondrashkova, A.I. Zhernovoi. Techn Phys 62(10), 1602–1604 (2017)

  26. V.V. Davydov, V.I, Dudkin, A.A. Petrov, N.S. Myazin. Tech Phys Lett 42(7), 692–696 (2016)

  27. L.N. Oraevskiy Molecular generators, (Moscow: Nauka 1964), 295 p.

  28. E.B. Aleksandrov, A.K. Vershovskii, Phys. Usp. 52(6), 573–601 (2009)

    Article  ADS  Google Scholar 

  29. V.V. Davydov, V.I. Dudkin, A.Y. Karseev, Instrum Exp Tech 58(6), 787–793 (2015)

    Article  Google Scholar 

  30. E. Andrew. Nuclear magnetic resonance, (Moscow. Instr. literature. 1957), 586 p.

  31. A. Leshe, Nuclear Induction (Veb Deustscher Verlag Der Wissenschaften, Berlin, 1963), p. 864

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Myazin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydov, V.V., Dudkin, V.I., Myazin, N.S. et al. New Design of a Magnetometer Based on Nuclear Magnetic Resonance to Study Variations of the Mid-field Magnetic Strength. Appl Magn Reson 52, 1201–1213 (2021). https://doi.org/10.1007/s00723-021-01373-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-021-01373-8

Navigation