Skip to main content
Log in

Diabetes, Heart Failure and Beyond: Elucidating the Cardioprotective Mechanisms of Sodium Glucose Cotransporter 2 (SGLT2) Inhibitors

  • Review Article
  • Published:
American Journal of Cardiovascular Drugs Aims and scope Submit manuscript

Abstract

Approximately 5 million individuals in the US are living with congestive heart failure (CHF), with 650,000 new cases being diagnosed every year. CHF has a multifactorial etiology, ranging from coronary artery disease, hypertension, valvular abnormalities and diabetes mellitus. Currently, guidelines by the American College of Cardiology advocate the use of angiotensin-converting enzyme (ACE) inhibitors, angiotensin II receptor blockers, β-blockers, diuretics, aldosterone antagonists, and inotropes for the medical management of heart failure. The sodium glucose cotransporter 2 (SGLT2) inhibitors are a class of drug that have been widely used in the management of type 2 diabetes mellitus that work by inhibiting the reabsorption of glucose in the proximal convoluted tubule. Since the EMPA-REG OUTCOME trial, several studies have demonstrated the benefits of SGLT2 inhibitors in reducing cardiovascular risk related to heart failure. While the cardiovascular benefits could be explained by their ability to reduce weight, improve glycemic index and lower blood pressure, several recent trials have suggested that SGLT2 inhibitors exhibit pleiotropic effects that underlie their cardioprotective properties. These findings have led to an expansion in preclinical and clinical research aiming to understand the mechanisms by which SGLT2 inhibitors improve heart failure outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yancy C, Jessup M, Bozkurt B, Butler J, Casey D, Drazner M, et al. 2013 ACCF/AHA guideline for the management of heart failure. J Am Coll Cardiol. 2013;62(16):e147–239.

    PubMed  Google Scholar 

  2. Kannel WB, McGee DL. Diabetes and cardiovascular disease: the Framingham study. JAMA. 1979;241(19):2035–8.

    CAS  PubMed  Google Scholar 

  3. MacDonald M, Petrie M, Varyani F, Ostergren J, Michelson E, Young J, et al. Impact of diabetes on outcomes in patients with low and preserved ejection fraction heart failure: an analysis of the Candesartan in Heart failure: assessment of reduction in mortality and morbidity (CHARM) programme. Eur Heart J. 2008;29(11):1377–85.

    PubMed  Google Scholar 

  4. Erqou S, Lee C, Suffoletto M, Echouffo-Tcheugui J, de Boer R, van Melle J, et al. Association between glycated haemoglobin and the risk of congestive heart failure in diabetes mellitus: systematic review and meta-analysis. Eur J Heart Fail. 2013;15(2):185–93.

    CAS  PubMed  Google Scholar 

  5. Zinman B, Wanner C, Lachin J, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28.

    CAS  PubMed  Google Scholar 

  6. Neal B, Perkovic V, Mahaffey K, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644–57.

    CAS  PubMed  Google Scholar 

  7. Wiviott S, Raz I, Bonaca M, Mosenzon O, Kato E, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347–57.

    CAS  PubMed  Google Scholar 

  8. Bell RM, Yellon DM. SGLT2 inhibitors: hypotheses on the mechanism of cardiovascular protection. Lancet Diabetes Endocrinol. 2018;6(6):435–7.

    PubMed  Google Scholar 

  9. Ferrannini E, Baldi S, Frascerra S, Astiarraga B, Barsotti E, Clerico A, Muscelli E. Renal handling of ketones in response to sodium–glucose cotransporter 2 inhibition in patients with type 2 diabetes. Diabetes Care. 2017;40(6):771–6.

    CAS  PubMed  Google Scholar 

  10. Scholtes RA, Muskiet MHA, van Baar MJB, Hesp AC, Greasley PJ, Karlsson C, Hammarstedt A, Arya N, van Raalte DH, Heerspink HJL. Natriuretic Effect of two weeks of dapagliflozin treatment in patients with type 2 diabetes and preserved kidney function during standardized sodium intake: results of the DAPASALT trial. Diabetes Care. 2021;44(2):440–7.

    CAS  PubMed  Google Scholar 

  11. Hallow KM, Helmlinger G, Greasley PJ, McMurray JJV, Boulton DW. Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis. Diabetes Obes Metab. 2018;20(3):479–87.

    CAS  PubMed  Google Scholar 

  12. Cai X, Yang W, Gao X, Chen Y, Zhou L, Zhang S, Han X, Ji L. The association between the dosage of SGLT2 Inhibitor and weight reduction in type 2 diabetes patients: a meta-analysis. Obesity (Silver Spring). 2018;26(1):70–80.

    CAS  Google Scholar 

  13. Shah R, Gayat E, Januzzi JL Jr, Sato N, Cohen-Solal A, diSomma S, Fairman E, Harjola VP, Ishihara S, Lassus J, Maggioni A, Metra M, Mueller C, Mueller T, Parenica J, Pascual-Figal D, Peacock WF, Spinar J, van Kimmenade R, Mebazaa A, GREAT (Global Research on Acute Conditions Team) Network. Body mass index and mortality in acutely decompensated heart failure across the world: a global obesity paradox. J Am Coll Cardiol. 2014;63(8):778–85.

    PubMed  Google Scholar 

  14. Zamora E, Díez-López C, Lupón J, de Antonio M, Domingo M, Santesmases J, Troya MI, Díez-Quevedo C, Altimir S, Bayes-Genis A. Weight loss in obese patients with heart failure. J Am Heart Assoc. 2016;5(3):e002468.

    PubMed  PubMed Central  Google Scholar 

  15. McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, Ponikowski P, Sabatine MS, Anand IS, Bělohlávek J, Böhm M, Chiang CE, Chopra VK, de Boer RA, Desai AS, Diez M, Drozdz J, Dukát A, Ge J, Howlett JG, Katova T, Kitakaze M, Ljungman CEA, Merkely B, Nicolau JC, O’Meara E, Petrie MC, Vinh PN, Schou M, Tereshchenko S, Verma S, Held C, DeMets DL, Docherty KF, Jhund PS, Bengtsson O, Sjöstrand M, Langkilde AM, DAPA-HF Trial Committees and Investigators. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381(21):1995–2008.

    CAS  PubMed  Google Scholar 

  16. Despa S, Islam M, Weber C, Pogwizd S, Bers D. Intracellular Na+ concentration is elevated in heart failure but Na/K pump function is unchanged. Circulation. 2002;105(21):2543–8.

    CAS  PubMed  Google Scholar 

  17. Pieske B, Maier LS, Piacentino V 3rd, Weisser J, Hasenfuss G, Houser S. Rate dependence of [Na+]i and contractility in nonfailing and failing human myocardium. Circulation. 2002;106(4):447–53.

    CAS  PubMed  Google Scholar 

  18. Kim C, Fan T, Kelly P, Himura Y, Delehanty J, Hang C, et al. Isoform-specific regulation of myocardial Na, K-ATPase alpha-subunit in congestive heart failure. Role of norepinephrine. Circulation. 1994;89(1):313–20.

    CAS  PubMed  Google Scholar 

  19. Dixon I, Hata T, Dhalla N. Sarcolemmal Na(+)-K(+)-ATPase activity in congestive heart failure due to myocardial infarction. Am J Physiol Cell Physiol. 1992;262(3):C664–71.

    CAS  Google Scholar 

  20. Lou Q, Janardhan A, Efimov IR. Remodeling of calcium handling in human heart failure. Adv Exp Med Biol. 2012;740:1145–74. https://doi.org/10.1007/978-94-007-2888-2_52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li J, Wu N, Dai W, et al. Association of serum calcium and heart failure with preserved ejection fraction in patients with type 2 diabetes. Cardivasc Diabetol. 2016;15(1):140. https://doi.org/10.1186/s12933-016-0458-6.

    Article  CAS  Google Scholar 

  22. Liu T, Takimoto E, Dimaano VL, et al. Inhibiting mitochondrial Na+/Ca2+ exchange prevents sudden death in a Guinea pig model of heart failure. Circ Res. 2014;115(1):44–54. https://doi.org/10.1161/CIRCRESAHA.115.303062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Baartscheer A, Schumacher C, Wüst R, Fiolet J, Stienen G, Coronel R, et al. Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits. Diabetologia. 2016;60(3):568–73.

    PubMed  PubMed Central  Google Scholar 

  24. Van Steenbergen A, Balteau M, Ginion A, Ferté L, Battault S, Ravenstein CM, Balligand JL, Daskalopoulos EP, Gilon P, Despa F, Despa S, Vanoverschelde JL, Horman S, Koepsell H, Berry G, Hue L, Bertrand L, Beauloye C. Sodium-myoinositol cotransporter-1, SMIT1, mediates the production of reactive oxygen species induced by hyperglycemia in the heart. Sci Rep. 2017;7:41166.

    PubMed  PubMed Central  Google Scholar 

  25. Trum M, Riechel J, Lebek S, Pabel S, Sossalla ST, Hirt S, Arzt M, Maier LS, Wagner S. Empagliflozin inhibits Na+/H+ exchanger activity in human atrial cardiomyocytes. ESC Heart Fail. 2020;7(6):4429–37.

    PubMed Central  Google Scholar 

  26. Li C, Zhang J, Xue M, Li X, Han F, Liu X, Xu L, Lu Y, Cheng Y, Li T, Yu X, Sun B, Chen L. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart. Cardiovasc Diabetol. 2019;18(1):15.

    PubMed  PubMed Central  Google Scholar 

  27. Balteau M, Tajeddine N, de Meester C, Ginion A, Des Rosiers C, Brady NR, Sommereyns C, Horman S, Vanoverschelde JL, Gailly P, Hue L, Bertrand L, Beauloye C. NADPH oxidase activation by hyperglycaemia in cardiomyocytes is independent of glucose metabolism but requires SGLT1. Cardiovasc Res. 2011;92:237–46.

    CAS  PubMed  Google Scholar 

  28. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107:1058–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ceolotto G, Gallo A, Papparella I, Franco L, Murphy E, Iori E, et al. Rosiglitazone reduces glucose-induced oxidative stress mediated by NAD(P)H oxidase via AMPK- dependent mechanism. Arterioscler Thromb Vasc Biol. 2007;27:2627–33.

    CAS  PubMed  Google Scholar 

  30. Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87:245–313.

    CAS  PubMed  Google Scholar 

  31. Quagliaro L, Piconi L, Assaloni R, Martinelli L, Motz E, Ceriello A. Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells: the role of protein kinase C and NAD(P)H-oxidase activation. Diabetes. 2003;52:2795–804.

    CAS  PubMed  Google Scholar 

  32. Banerjee SK, McGaffin KR, Pastor-Soler NM, Ahmad F. SGLT1 is a novel cardiac glucose transporter that is perturbed in disease states. Cardiovasc Res. 2009;84(1):111–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhou L, Cryan EV, D’Andrea MR, Belkowski S, Conway BR, Demarest KT. Human cardiomyocytes express high level of Na+/glucose cotransporter 1 (SGLT1). J Cell Biochem. 2003;90(2):339–46.

    CAS  PubMed  Google Scholar 

  34. Liang Y, Arakawa K, Ueta K, Matsushita Y, Kuriyama C, Martin T, Du F, Liu Y, Xu J, Conway B, Conway J, Polidori D, Ways K, Demarest K. Effect of canagliflozin on renal threshold for glucose, glycemia, and body weight in normal and diabetic animal models. PLoS ONE. 2012;7(2):e30555.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Baartscheer A, Schumacher CA, van Borren MM, Belterman CN, Coronel R, Fiolet JW. Increased Na+/H+-exchange activity is the cause of increased [Na+]i and underlies disturbed calcium handling in the rabbit pressure and volume overload heart failure model. Cardiovasc Res. 2003;57:1015–24.

    CAS  PubMed  Google Scholar 

  36. Packer M. Activation and inhibition of sodium–hydrogen exchanger is a mechanism that links the pathophysiology and treatment of diabetes mellitus with that of heart failure. Circulation. 2017;136(16):1548–59.

    CAS  PubMed  Google Scholar 

  37. Despa S. Myocytes [Na+]I dysregulation in heart failure and diabetic cardiomyopathy. Front Physiol. 2018;9:1303.

    PubMed  PubMed Central  Google Scholar 

  38. Fliegel L. Regulation of the Na+/H+ exchanger in the healthy and diseased myocardium. Expert Opin Ther Targets. 2009;13:55–68.

    CAS  PubMed  Google Scholar 

  39. Kili’c A, Huang CX, Rajapurohitam V, Madwed JB, Karmazyn M. Early and transient sodium-hydrogen exchanger isoform 1 inhibition attenuates subsequent cardiac hypertrophy and heart failure following coronary artery ligation. J Pharmacol Exp Ther. 2014;351:492–9.

    Google Scholar 

  40. Darmellah A, Baetz D, Prunier F, Tamareille S, Rücker-Martin C, Feuvray D. Enhanced activity of the myocardial NaC/HC exchanger contributes to left ventricular hypertrophy in the Goto-Kakizaki rat model of type 2 diabetes: critical role of Akt. Diabetologia. 2007;50:1335–44.

    CAS  PubMed  Google Scholar 

  41. Uthman L, Baartscheer A, Bleijlevens B, Schumacher CA, Fiolet JWT, Koeman A, et al. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of NaC/HC exchanger, lowering of cytosolic NaC and vasodilation. Diabetologia. 2018;61:722–6.

    CAS  PubMed  Google Scholar 

  42. Sardet C, Franchi A, Pouyssegur J. Molecular cloning, primary structure, and expression of the human growth factor-activatable Na+/H+ antiporter. Cell. 1989;56:271–80.

    CAS  PubMed  Google Scholar 

  43. Cingolani HE, Ennis IL. Sodium-hydrogen exchanger, cardiac overload, and myocardial hypertrophy. Circulation. 2007;115(9):1090–100.

    PubMed  Google Scholar 

  44. Wakabayashi S, Hisamitsu T, Nakamura TY. Regulation of the cardiac Na+/H+ exchanger in health and disease. J Mol Cell Cardiol. 2013;61:68–76.

    CAS  PubMed  Google Scholar 

  45. Odunewu-Aderibigbe A, Fliegel L. The Na+/H+ exchanger and pH regulation in the heart. Int Union Biochem Mol Biol. 2014;66:679–85.

    CAS  Google Scholar 

  46. Wakabayashi S, Fafournoux P, Sardet C, Pouyssegur J. The Na+/H antiporter cytoplasmic domain mediates growth factor signals and controls “H+-sensing.” Proc Natl Acad Sci USA. 1992;89:2424–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Alexander RT, Grinstein S. Na+/H+ exchangers and the regulation of volume. Acta Physiol. 2006;187:159–67.

    CAS  Google Scholar 

  48. Moor A, Gan XT, Karmazyn M, Fliegel L. Activation of Na1/H1 exchanger-directed protein kinases in the ischemic and ischemic reperfused rat myocardium. J Biol Chem. 2001;276:16113–22.

    CAS  PubMed  Google Scholar 

  49. Karki P, Fliegel L. Overexpression of the NHE1 isoform of the Na(1)/H (1) exchanger causes elevated apoptosis in isolated cardiomyocytes after hypoxia/reoxygenation challenge. Mol Cell Biochem. 2010;338:47–57.

    CAS  PubMed  Google Scholar 

  50. Medina AJ, Pinilla OA, Portiansky EL, Caldiz CI, Ennis IL. Silencing of the Na+/H+ exchanger 1(NHE-1) prevents cardiac structural and functional remodeling induced by angiotensin II. Exp Mol Pathol. 2019;107:9.

    Google Scholar 

  51. Mraiche F, Oka T, Gan XT, Karmazyn M, Fliegel L. Activated NHE1 is required to induce early cardiac hypertrophy in mice. Basic Res Cardiol. 2011;106:603–16.

    CAS  PubMed  Google Scholar 

  52. Garciarena CD, Caldiz CI, Correa MV, Schinella GR, Mosca SM, de Cingolani CGE, Cingolani HE, Ennis IL. Na+/H+ exchanger-1 inhibitors decrease myocardialsuperoxide production via direct mitochondrial action. J Appl Physiol. 2008;105(6):1706–13.

    CAS  PubMed  Google Scholar 

  53. Garrido AM, Griendling KK. NADPH oxidases and angiotensin II receptor signaling. Mol Cell Endocrinol. 2009;302(2):148–58.

    CAS  PubMed  Google Scholar 

  54. Ennis IL, Escudero EM, Console GM, Camihort G, Dumm CG, Seidler RW, de Hurtado MCC, Cingolani HE. Regression of isoproterenol -induced cardiac hypertrophy by Na+/H+ exchanger inhibition. Hypertension. 2003;41(6):1324–9.

    CAS  PubMed  Google Scholar 

  55. Ennis IL, Garciarena CD, Escudero EM, Perez NG, Dulce RA, de Hurtadoand MCC, Cingolani HE. Normalization of the calcineurin pathway underlies the regression of hypertensive hypertrophy induced by Na+/H+ exchanger-1 (NHE-1) inhibition. Can J Physiol Pharmacol. 2007;85(3–4):301–10.

    CAS  PubMed  Google Scholar 

  56. Ferrannini E, Mark M, Mayoux E. CV protection in the EMPA-REG OUTCOME trial: a “Thrifty Substrate” hypothesis. Diabetes Care. 2016;39(7):1108–14.

    PubMed  Google Scholar 

  57. Taegtmeyer H. Energy metabolism of the heart: from basic concepts to clinical applications. Curr Probl Cardiol. 1994;19(2):59–113.

    CAS  PubMed  Google Scholar 

  58. Kuhlbrandt W. Structure and mechanisms of F-type ATP synthases. Annu Rev Biochem. 2019;88:21.1-21.35.

    Google Scholar 

  59. Aubert G, Martin OJ, Horton JL, Lai L, Vega RB, Leone TC, et al. The failing heart relies on ketone bodies as a fuel. Circulation. 2016;133(8):698–705.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Bedi KC Jr, Snyder NW, Brandimarto J, Aziz M, Mesaros C, Worth AJ, et al. Evidence for intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human heart failure. Circulation. 2016;133(8):706–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Bayeva M, Sawicki KT, Ardehali H. Taking diabetes to heart–deregulation of myocardial lipid metabolism in diabetic cardiomyopathy. J Am Heart Assoc. 2013;2(6):e000433.

    PubMed  PubMed Central  Google Scholar 

  62. Ferrannini E, Muscelli E, Frascerra S, Frascerra S, Baldi S, Mari A, et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J Clin Invest. 2014;124(2):499–508.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Janardhan A, Chen J, Crawford PA. Altered systemic ketone body metabolism in advanced heart failure. Tex Heart Inst J. 2011;38(5):533–8.

    PubMed  PubMed Central  Google Scholar 

  64. Bratusch-Marrain P, Waldhausl W, Grubeck-Loebenstein B, Korn A, Vierhapper H, Nowotny P. The role of “diabetogenic” hormones on carbohydrate and lipid metabolism following oral glucose loading in insulin dependent diabetics: effects of acute hormone administration. Diabetologia. 1981;21(4):387–93.

    CAS  PubMed  Google Scholar 

  65. Shimazu T, Hirschey MD, Newman J, He W, Shirakawa K, Le Moan N, et al. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science. 2013;339(6116):211–4.

    CAS  PubMed  Google Scholar 

  66. Dutka M, Bobiński R, Ulman-Włodarz I, Hajduga M, Bujok J, Pająk C, Ćwiertnia M. Various aspects of inflammation in heart failure. Heart Fail Rev. 2020;25(3):537–48.

    PubMed  Google Scholar 

  67. Tsalamandris S, Antonopoulos AS, Oikonomou E, et al. The role of inflammation in diabetes: current concepts and future perspectives. Eur Cardiol. 2019;14(1):50–9. https://doi.org/10.15420/ecr.2018.33.1.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kim SR, Lee SG, Kim SH, et al. SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. Nat Commun. 2020;11(1):2127.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ye Y, Bajaj M, Yang HC, Perez-Polo JR, Birnbaum Y. SGLT-2 inhibition with dapagliflozin reduces the activation of the Nlrp3/ASC inflammasome and attenuates the development of diabetic cardiomyopathy in mice with type 2 diabetes. Further augmentation of the effects with saxagliptin, a DPP4 inhibitor. Cardiovasc Drugs Ther. 2017;31(2):119–32.

    PubMed  Google Scholar 

  70. Lee TM, Chang NC, Lin SZ. Dapagliflozin, a selective SGLT2 inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free Radic Biol Med. 2017;104:298–310.

    CAS  PubMed  Google Scholar 

  71. Nakatsu Y, Kokubo H, Bumdelger B, Yoshizumi M, Yamamotoya T, Matsunaga Y, Ueda K, Inoue Y, Inoue MK, Fujishiro M, Kushiyama A, Ono H, Sakoda H, Asano T. The SGLT2 inhibitor luseogliflozin rapidly normalizes aortic mRNA levels of inflammation-related but not lipid-metabolism-related genes and suppresses atherosclerosis in diabetic ApoE KO mice. Int J Mol Sci. 2017;18(8):1704.

    PubMed Central  Google Scholar 

  72. Han JH, Oh TJ, Lee G, Maeng HJ, Lee DH, Kim KM, Choi SH, Jang HC, Lee HS, Park KS, Kim YB, Lim S. The beneficial effects of empagliflozin, an SGLT2 inhibitor, on atherosclerosis in ApoE−/− mice fed a western diet. Diabetologia. 2017;60(2):364–76.

    CAS  PubMed  Google Scholar 

  73. Tanaka A, Shimabukuro M, Machii N, Teragawa H, Okada Y, Shima KR, Takamura T, Taguchi I, Hisauchi I, Toyoda S, Matsuzawa Y, Tomiyama H, Yamaoka-Tojo M, Yoshida H, Sato Y, Ikehara Y, Ueda S, Higashi Y, Node K, EMBLEM Investigators. Effect of empagliflozin on endothelial function in patients with type 2 diabetes and cardiovascular disease: results from the multicenter, randomized, placebo-controlled. Double-Blind EMBLEM Trial. Diabetes Care. 2019;42(10):e159–61.

    CAS  PubMed  Google Scholar 

  74. Abazid RM, Smettei OA, Kattea MO, Sayed S, Saqqah H, Widyan AM, Opolski MP. Relation between epicardial fat and subclinical atherosclerosis in asymptomatic individuals. J Thorac Imaging. 2017;32(6):378–82.

    PubMed  Google Scholar 

  75. Asghar A, Sheikh N. Role of immune cells in obesity induced low grade inflammation and insulin resistance. Cell Immunol. 2017;315:18–26.

    CAS  PubMed  Google Scholar 

  76. Packer M. Do sodium-glucose co-transporter-2 inhibitors prevent heart failure with a preserved ejection fraction by counterbalancing the effects of leptin? A novel hypothesis. Diabetes Obes Metab. 2018;20(6):1361–6.

    CAS  PubMed  Google Scholar 

  77. Bailey CJ, Iqbal N, T’joen C, List JF. Dapagliflozin monotherapy in drug-naïve patients with diabetes: a randomized-controlled trial of low-dose range. Diabetes Obes Metab. 2012;14(10):951–9.

    CAS  PubMed  Google Scholar 

  78. Garvey WT, Van Gaal L, Leiter LA, Vijapurkar U, List J, Cuddihy R, Ren J, Davies MJ. Effects of canagliflozin versus glimepiride on adipokines and inflammatory biomarkers in type 2 diabetes. Metabolism. 2018;85:32–7.

    CAS  PubMed  Google Scholar 

  79. Bouchi R, Terashima M, Sasahara Y, Asakawa M, Fukuda T, Takeuchi T, Nakano Y, Murakami M, Minami I, Izumiyama H, Hashimoto K, Yoshimoto T, Ogawa Y. Luseogliflozin reduces epicardial fat accumulation in patients with type 2 diabetes: a pilot study. Cardiovasc Diabetol. 2017;16(1):32.

    PubMed  PubMed Central  Google Scholar 

  80. Sato T, Aizawa Y, Yuasa S, Kishi S, Fuse K, Fujita S, Ikeda Y, Kitazawa H, Takahashi M, Sato M, Okabe M. The effect of dapagliflozin treatment on epicardial adipose tissue volume. Cardiovasc Diabetol. 2018;17(1):6.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010;221(1):3–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Sciarretta S, Yee D, Nagarajan N, et al. Trehalose-induced activation of autophagy improves cardiac remodeling after myocardial infarction. J Am Coll Cardiol. 2018;71(18):1999–2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Packer M. Autophagy stimulation and intracellular sodium reduction as mediators of the cardioprotective effect of sodium-glucose cotransporter 2 inhibitors. Eur J Heart Fail. 2020;4:618–28.

    Google Scholar 

  84. Zhou H, Wang S, Zhu P, Hu S, Chen Y, Ren J. Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission. Redox Biol. 2018;15:335–46.

    CAS  PubMed  Google Scholar 

  85. Swe MT, Thongnak L, Jaikumkao K, Pongchaidecha A, Chatsudthipong V, Lungkaphin A. Dapagliflozin not only improves hepatic injury and pancreatic endoplasmic reticulum stress, but also induces hepatic gluconeogenic enzymes expression in obese rats. Clin Sci (Lond). 2019;133(23):2415–30.

    CAS  Google Scholar 

  86. Bessho R, Takiyama Y, Takiyama T, Kitsunai H, Takeda Y, Sakagami H, Ota T. Hypoxia-inducible factor-1α is the therapeutic target of the SGLT2 inhibitor for diabetic nephropathy. Sci Rep. 2019;9(1):14754.

    PubMed  PubMed Central  Google Scholar 

  87. LaMoia TE, Shulman GI. Cellular and molecular mechanisms of metformin action. Endocr Rev. 2021;42(1):77–96.

    PubMed  Google Scholar 

  88. Halabi A, Sen J, Huynh Q, Marwick TH. Metformin treatment in heart failure with preserved ejection fraction: a systematic review and meta-regression analysis. Cardiovasc Diabetol. 2020;19(1):124.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhao Y, Xu L, Tian D, Xia P, Zheng H, Wang L, Chen L. Effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on serum uric acid level: A meta-analysis of randomized controlled trials. Diabetes Obes Metab. 2018;20(2):458–62.

    CAS  PubMed  Google Scholar 

  90. Davies MJ, Trujillo A, Vijapurkar U, Damaraju CV, Meininger G. Effect of canagliflozin on serum uric acid in patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2015;17(4):426–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Li Z, Shen Y, Chen Y, Zhang G, Cheng J, Wang W. High uric acid inhibits cardiomyocyte viability through the ERK/P38 pathway via oxidative stress. Cell Physiol Biochem. 2018;45(3):1156–64.

    CAS  PubMed  Google Scholar 

  92. Mazer CD, Hare GMT, Connelly PW, Gilbert RE, Shehata N, Quan A, Teoh H, Leiter LA, Zinman B, Jüni P, Zuo F, Mistry N, Thorpe KE, Goldenberg RM, Yan AT, Connelly KA, Verma S. Effect of empagliflozin on erythropoietin levels, iron stores, and red blood cell morphology in patients with type 2 diabetes mellitus and coronary artery disease. Circulation. 2020;141(8):704–7.

    PubMed  Google Scholar 

  93. Aberle J, Menzen M, Schmid SM, Terkamp C, Jaeckel E, Rohwedder K, Scheerer MF, Xu J, Tang W, Birkenfeld AL. Dapagliflozin effects on haematocrit, red blood cell count and reticulocytes in insulin-treated patients with type 2 diabetes. Sci Rep. 2020;10(1):22396.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Chiba Y, Yamada T, Tsukita S, et al. Dapagliflozin, a sodium-glucose co-transporter 2 inhibitor, acutely reduces energy expenditure in BAT via neural signals in mice. PLoS ONE. 2016;11(3):e0150756.

    PubMed  PubMed Central  Google Scholar 

  95. Herat LY, Magno AL, Rudnicka C, Hricova J, Carnagarin R, Ward NC, Arcambal A, Kiuchi MG, Head GA, Schlaich MP, Matthews VB. SGLT2 inhibitor-induced sympathoinhibition: a novel mechanism for cardiorenal protection. JACC Basic Transl Sci. 2020;5(2):169–79.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utkarsh Ojha.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this review.

Conflict of Interests

Utkarsh Ojha, Lenisse Reyes, Florence Eyenga, Diane Oumbe, Justyna Watkowska and Henock Saint-Jacques have no conflicts of interest to declare.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

Author Contributions

All authors contributed to the literature review and drafting or revising of the manuscript, gave final approval of the version to be published, and agree to be accountable for all aspects of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ojha, U., Reyes, L., Eyenga, F. et al. Diabetes, Heart Failure and Beyond: Elucidating the Cardioprotective Mechanisms of Sodium Glucose Cotransporter 2 (SGLT2) Inhibitors. Am J Cardiovasc Drugs 22, 35–46 (2022). https://doi.org/10.1007/s40256-021-00486-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40256-021-00486-6

Navigation