Skip to main content
Log in

A Priori Bounds and the Existence of Positive Solutions for Weighted Fractional Systems

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

In this paper, we prove the existence of positive solutions to the following weighted fractional system involving distinct weighted fractional Laplacians with gradient terms

$$\left\{ {\matrix{{( - \Delta )_{{a_1}}^{{\alpha \over 2}}{u_1}(x) = u_1^{{q_{11}}}(x) + u_2^{{q_{12}}}(x) + {h_1}(x,{u_1}(x),{u_2}(x),\nabla {u_1}(x),\nabla {u_2}(x)),\,\,\,\,\,\,x \in \Omega ,} \hfill \cr {( - \Delta )_{{a_2}}^{{\beta \over 2}}{u_2}(x) = u_1^{{q_{21}}}(x) + u_2^{{q_{22}}}(x) + {h_2}(x,{u_1}(x),{u_2}(x),\nabla {u_1}(x),\nabla {u_2}(x)),\,\,\,\,\,\,x \in \Omega ,} \hfill \cr {{u_1}(x) = 0,\,\,\,{u_2}(x) = 0,\,\,\,\,\,\,x \in {\mathbb{R}}{^n}\backslash \Omega .} \hfill \cr } } \right.$$

Here \(( - \Delta )_{{a_1}}^{{\alpha \over 2}}\) and \(( - \Delta )_{{a_2}}^{{\beta \over 2}}\) denote weighted fractional Laplacians and Ω ⊂ ℝn is a C2 bounded domain. It is shown that under some assumptions on hi(i = 1, 2), the problem admits at least one positive solution (u1(x), u2(x)). We first obtain the a priori bounds of solutions to the system by using the direct blow-up method of Chen, Li and Li. Then the proof of existence is based on a topological degree theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barrios B, Del Pezzo L, Melián J G, Quaas A. A priori bounds and existence of solutions for some nonlocal elliptic problems. Rev Mat Iberoam, 2018, 34: 195–220

    Article  MathSciNet  Google Scholar 

  2. Bonforte M, Sire Y, Vázquez J L. Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains. Discrete Contin Dyn Syst, 2015, 35: 5725–5767

    Article  MathSciNet  Google Scholar 

  3. Caffarelli L, Silvestre L. An extension problem related to the fractional Laplacian. Comm Partial Differential Equations, 2007, 32: 1245–1260

    Article  MathSciNet  Google Scholar 

  4. Caffarelli L, Silvestre L. Regularity theory for fully nonlinear integro-differential equations. Comm Pure Appl Math, 2009, 62: 597–638

    Article  MathSciNet  Google Scholar 

  5. Caffarelli L, Silvestre L. Regularity results for nonlocal equations by approximation. Arch Ration Mech Anal, 2011, 200: 59–88

    Article  MathSciNet  Google Scholar 

  6. Caffarelli L, Vasseur A. Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann Math, 2010, 171: 1903–1930

    Article  MathSciNet  Google Scholar 

  7. Cao Y, Wu J, Wang L. Fundamental solutions of a class of homogeneous integro-differential elliptic equations. Discrete Contin Dyn Syst, 2019, 39: 1237–1256

    Article  MathSciNet  Google Scholar 

  8. Chang K. Methods in Nonlinear Analysis, Springer Monographs in Mathematics. Berlin: Springer-Verlag, 2005

    Google Scholar 

  9. Chen W, Fang Y, Yang R. Loiuville theorems involving the fractional Laplacian on a half space. Adv Math, 2015, 274: 167–198

    Article  MathSciNet  Google Scholar 

  10. Chen W, Li C. A priori estimates for solutions to nonlinear elliptic equations. Arch Rational Mech Anal, 1993, 122: 145–157

    Article  MathSciNet  Google Scholar 

  11. Chen W, Li C, Li Y. A direct blowing-up and rescaling argument on nonlocal elliptic equations. Internat J Math, 2016, 27: 1650064, 20 pp

    Article  MathSciNet  Google Scholar 

  12. Chen W, Li C, Ou B. Classification of solutions for an integral equation. Comm Pure Appl Math, 2006, 59: 330–343

    Article  MathSciNet  Google Scholar 

  13. Chen W, Li Y, Ma P. The Fractional Laplacian. World Scientific Publishing Company, 2020

  14. Cheng T, Huang G, Li C. The maximum principles for fractional Laplacian equations and their applications. Commun Contemp Math, 2017, 19: 1750018, 12 pp

    Article  MathSciNet  Google Scholar 

  15. Constantin P. Euler equations, Navier-Stokes equations and turbulence//Mathematical foundation of turbulent viscous flows. Lecture Notes in Math, 1871. Springer, 2006: 1–43

  16. Fall M M. Regularity estimates for nonlocal Schrödinger equations. Discrete Contin Dyn Syst, 2019, 39: 1405–1456

    Article  MathSciNet  Google Scholar 

  17. de Figueiredo D G, Sirakov B. Liouville type theorems, monotonicity results and a priori bounds for positive solutions of elliptic systems. Math Ann, 2005, 333: 231–260

    Article  MathSciNet  Google Scholar 

  18. Gidas B, Spruck J. Global and local behavior of positive solutions of nonlinear elliptic equations. Comm Pure Appl Math, 2010, 34: 525–598

    Article  MathSciNet  Google Scholar 

  19. Gidas B, Spruck J. A priori bounds for positive solutions of nonlinear elliptic equations. Comm Partial Differential Equations, 1981, 6: 883–901

    Article  MathSciNet  Google Scholar 

  20. Gilbarg D, Trudinger N. Elliptic Partial Differential Equations of Second Order. 2nd ed. Berlin: Springer-Verlag, 1983

    MATH  Google Scholar 

  21. Jarohs S, Weth T. Symmetry via antisymmetric maximum principle in nonlocal problems of variable order. Ann Mat Pura Appl, 2016, 195: 273–291

    Article  MathSciNet  Google Scholar 

  22. Kriventsov D. C1,α interior regularity for nonlinear nonlocal elliptic equations with rough kernels. Comm Partial Differential Equations, 2013, 38: 2081–2106

    Article  MathSciNet  Google Scholar 

  23. Li C, Wu Z. Radial symmetry for systems of fractional Laplacian. Acta Math Sci, 2018, 38B: 1567–1582

    Article  MathSciNet  Google Scholar 

  24. Lin L. A priori bounds and existence result of positive solutions for fractional Laplacian systems. Discrete Contin Dyn Syst, 2019, 39: 1517–1531

    Article  MathSciNet  Google Scholar 

  25. Leite E, Montenegro M. A priori bounds and positive solutions for nonvariational fractional elliptic systems. Differential Integral Equations, 2017, 30: 947–974

    MathSciNet  MATH  Google Scholar 

  26. Poláacik P, Quittner P, Souplet P. Singularity and decay estimates in superlinear problems via Liouville-type theorems, I. Elliptic equations and systems. Duke Math J, 2007, 139: 555–579

    Article  MathSciNet  Google Scholar 

  27. Pivato M, Seco L. Estimating the spectral measure of a multivariate stable distribution via spherical harmonic analysis. J Multivariate Anal, 2003, 87: 219–240

    Article  MathSciNet  Google Scholar 

  28. Quaas A, Xia A. A Liouville type theorem for Lane-Emden systems involving the fractional Laplacian. Nonlinearity, 2016, 29: 2279–2297

    Article  MathSciNet  Google Scholar 

  29. Quaas A, Xia A. Liouville type theorems for nonlinear elliptic equations and systems involving fractional Laplacian in the half space. Calc Var Partial Differential Equations, 2015, 52: 641–659

    Article  MathSciNet  Google Scholar 

  30. Quaas A, Xia A. Existence results of positive solutions for nonlinear cooperative elliptic systems involving fractional Laplacian. Commun Contemp Math, 2018, 20: 1750032, 22 pp

    Article  MathSciNet  Google Scholar 

  31. Silvestre L. Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm Pure Appl Math, 2007, 60: 67–112

    Article  MathSciNet  Google Scholar 

  32. Servadei R, Valdinoci E. Weak and viscosity solutions of the fractional Laplace equation. Publ Mat, 2014, 58: 133–154

    Article  MathSciNet  Google Scholar 

  33. Servadei R, Valdinoci E. Lewy-Stampacchia type estimates for variational inequalities driven by (non) local operators. Rev Mat Iberoam, 2013, 29: 1091–1126

    Article  MathSciNet  Google Scholar 

  34. Wang P, Wang Y. Positive solutions for a weighted fractional system. Acta Math Sci, 2018, 38B: 935–949

    Article  MathSciNet  Google Scholar 

  35. Wang P, Niu P. Liouville’s Theorem for a fractional elliptic system. Discrete Contin Dyn Syst, 2019, 39: 1545–1558

    Article  MathSciNet  Google Scholar 

  36. Wang P, Niu P. Symmetric properties for fully nonlinear nonlocal system. Nonlinear Anal, 2019, 187: 134–146

    Article  MathSciNet  Google Scholar 

  37. Yang J, Yu X. Existence of a cooperative elliptic system involving Pucci operator. Acta Math Sci, 2010, 30B: 137–147

    MathSciNet  MATH  Google Scholar 

  38. Zhuo R, Chen W, Cui X, Yuan Z. Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian. Discrete Contin Dyn Syst, 2016, 36: 1125–1141

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengcheng Niu  (钮鹏程).

Additional information

The research was supported by NSFC (11701452; 11771354).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Niu, P. A Priori Bounds and the Existence of Positive Solutions for Weighted Fractional Systems. Acta Math Sci 41, 1547–1568 (2021). https://doi.org/10.1007/s10473-021-0509-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-021-0509-2

Key words

2010 MR Subject Classification

Navigation