Skip to main content
Log in

Stochastic simulation of the FDA centrifugal blood pump benchmark

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

In the present study, the effect of physical and operational uncertainties on the hydrodynamic and hemocompatibility characteristics of a centrifugal blood pump designed by the U.S. food and drug administration is investigated. Physical uncertainties include the randomness in the blood density and viscosity, while the operational uncertainties are composed of the pump rotational speed, mass flow rate, and turbulence intensity. The non-intrusive polynomial chaos expansion has been employed to conduct the uncertainty quantification analysis. Additionally, to assess each stochastic parameter’s influence on the quantities of interest, the sensitivity analysis is utilized through the Sobol’ indices. For numerical simulation of the pump’s blood flow, the SST \(k-\omega\) turbulence model and a power-law model of hemolysis were employed. The pump’s velocity field is profoundly affected by the rotational speed in the bladed regions and the mass flow rate in other zones. Furthermore, the hemolysis index is dominantly sensitive to blood viscosity. According to the results, pump hydraulic characteristics (i.e., head and efficiency) show a more robust behavior than the hemocompatibility characteristics (i.e., hemolysis index) regarding the operational and physical uncertainties. Finally, it was found that the probability distribution function of the hemolysis index covers the experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Raisee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, M.S., Razzaghi, P., Raisee, M. et al. Stochastic simulation of the FDA centrifugal blood pump benchmark. Biomech Model Mechanobiol 20, 1871–1887 (2021). https://doi.org/10.1007/s10237-021-01482-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-021-01482-0

Keywords

Navigation