Skip to main content
Log in

The Kapustin–Witten equations on ALE and ALF gravitational instantons

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study solutions to the Kapustin–Witten equations on ALE and ALF gravitational instantons. On any such space and for any compact structure group, we prove asymptotic estimates for the Higgs field. We then use it to prove a vanishing theorem in the case when the underlying manifold is \({\mathbb {R}}^4\) or \({\mathbb {R}}^3 \times {\mathbb {S}}^1\) and the structure group is \(\text {SU}(2)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cheng, S.-Y., Yau, S.-T.: Differential equations on Riemannian manifolds and their geometric applications. Commun. Pure Appl. Math. 28(3), 333–354 (1975)

    Article  MathSciNet  Google Scholar 

  2. Gagliardo, M., Uhlenbeck, K.: Geometric aspects of the Kapustin–Witten equations. J. Fixed Point Theory Appl. 11(2), 185–198 (2012)

    Article  MathSciNet  Google Scholar 

  3. Gibbons, G.W., Hawking, S.W.: Gravitational multi-instantons. Phys. Lett. 78B, 430 (1978)

    Article  ADS  Google Scholar 

  4. He, S., Mazzeo, R.: The extended Bogomolny equations and generalized Nahm pole boundary condition. Geom. Topol. 23(5), 2475–2517 (2019)

    Article  MathSciNet  Google Scholar 

  5. He, S., Walpuski, T.: Hecke modifications of Higgs bundles and the extended Bogomolny equation. J. Geom. Phys. 146, 103487 (2019)

    Article  MathSciNet  Google Scholar 

  6. Jaffe, A., Taubes, C.H.: Vortices and Monopoles. Progress in Physics. Birkhauser, Boston (1980). MR614447 (82m:81051)

    MATH  Google Scholar 

  7. Kapustin, A., Witten, E.: Electric-magnetic duality and the geometric Langlands program. Commun. Number Theory Phys. 1(1), 1–236 (2007)

    Article  MathSciNet  Google Scholar 

  8. Kronheimer, P.B.: The construction of ALE spaces as hyper-Kahler quotients. J. Differ. Geom. 29(3), 665–683 (1989). MR992334 (90d:53055)

    MathSciNet  MATH  Google Scholar 

  9. Li, P., Tam, L.-F.: Green’s fs functions, harmonic functions, and volume comparison. J. Differ. Geom. 41(2), 277–318 (1995)

    Article  Google Scholar 

  10. Li, P., Yau, S.-T.: On the parabolic kernel of the Schrodinger operator. Acta Math. 156(3–4), 153–201 (1986)

    Article  MathSciNet  Google Scholar 

  11. Mazzeo, R., Witten, E.: The Nahm pole boundary condition. In: Katzarkov, L., Lupercio, E., Turrubiates, F.J. (eds.) The Influence of Solomon Lefschetz in Geometry and Topology, pp. 171–226. American Mathematical Society, Providence (2014)

    MATH  Google Scholar 

  12. Mazzeo, R., Witten, E.: The KW equations and the Nahm pole boundary condition with knots. Commun. Anal. Geom. 28(4), 871–942 (2020)

    Article  MathSciNet  Google Scholar 

  13. Nagy, A., Oliveira, G.: The Haydys monopole equation. Selecta Math. (N.S.) 26(4), Paper No. 58 (2020)

    Article  MathSciNet  Google Scholar 

  14. Taubes, C.H.: Growth of the Higgs field for solutions to the Kapustin–Witten equations on R4 (2017). arXiv:1701.03072

  15. Taubes, C.H.: Sequences of Nahm pole solutions to the SU(2) Kapustin–Witten equations (2018). arXiv:1805.02773

  16. Taubes, C.H.: The \(\mathbb{R}\)-invariant solutions to the Kapustin–Witten equations on (0, \(\infty \)) \(\times \mathbb{R}^2 \times \mathbb{R}\) with generalized Nahm pole asymptotics (2019). arXiv:1903.03539

  17. Uhlenbeck, K.K.: Removable singularities in Yang–Mills fields. Commun. Math. Phys. 83(1), 11–29 (1982). MR648355 (83e:53034)

    Article  ADS  MathSciNet  Google Scholar 

  18. Walpuski, T.: MTH931 Riemannian geometry II. https://walpu.ski/Teaching/RiemannianGeometry.pdf. Accessed 2019

  19. Witten, E.: Khovanov homology and gauge theory. In: Proceedings of the Freedman Fest, pp. 291–308 (2012)

  20. Witten, E.: More on gauge theory and geometric Langlands. Adv. Math. 327, 624–707 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mark Stern for many helpful conversations about gauge theory. We also thank Bera Gorapada for his valuable comments on the results of this paper. Ákos Nagy would like to thank Siqi He for useful discussions about the Kapustin–Witten equations, and he also thanks the Universidade Federal Fluminense and IMPA for their hospitality during the final stages of the preparation of this paper. We also thank the anonymous referees for their comments and suggestions. Gonçalo Oliveira is supported by Fundação Serrapilheira 1812-27395, by CNPq Grants 428959/2018-0 and 307475/2018-2, and FAPERJ through the program Jovem Cientista do Nosso Estado E-26/202.793/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonçalo Oliveira.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagy, Á., Oliveira, G. The Kapustin–Witten equations on ALE and ALF gravitational instantons. Lett Math Phys 111, 87 (2021). https://doi.org/10.1007/s11005-021-01426-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-021-01426-w

Keywords

Mathematics Subject Classification

Navigation