Skip to main content
Log in

\(\psi \)-Mittag–Leffler pseudo-fractional operators

  • Published:
Journal of Pseudo-Differential Operators and Applications Aims and scope Submit manuscript

Abstract

In this paper we present new types of pseudo-fractional integral and derivatives on a semiring \(([a,b],\oplus ,\odot )\). These operators are called the \(\psi \)-Riemann–Liouville–Mittag–Leffler pseudo-fractional integrals and derivatives and \(\psi \)-Caputo–Mittag–Leffler pseudo-fractional derivatives. Some properties, like the semigroup law, composition relations between pseudo-fractional differentiation and pseudo-fractional integration operators, composition relations between pseudo-fractional derivatives, among others, are discussed. Finally, as an application, we proved two versions of the fundamental theorem of fractional calculus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adjabi, Y., Jarad, F., Baleanu, D., Abdeljawad, T.: On Cauchy problems with Caputo–Hadamard fractional derivatives. J. Comput. Anal. Appl. 21, 661–681 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Asanov, A., Almeida, R., Malinowska, A.B.: Fractional differential equations and Volterra–Stieltjes integral equations of the second kind. Comput. Appl. Math 38, 160 (2019). https://doi.org/10.1007/s40314-019-0941-2

    Article  MathSciNet  MATH  Google Scholar 

  3. Agahi, H., Alipour, M.: On pseudo-Mittag–Leffler functions and applications. Fuzzy Sets Syst. 327, 21–30 (2017). https://doi.org/10.1016/j.fss.2016.11.011

    Article  MathSciNet  MATH  Google Scholar 

  4. Agahi, H., Babakhani, A., Mesiar, R.: Pseudo-fractional integral inequality of Chebyshev type. Inf. Sci. 301, 161–168 (2015). https://doi.org/10.1016/j.ins.2014.12.056

    Article  MathSciNet  MATH  Google Scholar 

  5. Almeida, R.: A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simulat. 4, 460–481 (2017). https://doi.org/10.1016/j.cnsns.2016.09.006

    Article  MathSciNet  MATH  Google Scholar 

  6. Almeida, R., Malinowska, A.B., Monteiro, M.T.T.: Fractional differential equations with a Caputo derivative with respect to a Kernel function and their applications. Math. Methods Appl. Sci. 41, 336–352 (2018)

    Article  MathSciNet  Google Scholar 

  7. Babakhani, A., Yadollahzadeh, M., Neamaty, A.: Some properties of pseudo-fractional operators. J. Pseudo-Differ. Oper. Appl. 9, 677–700 (2018). https://doi.org/10.1007/s11868-017-0206-z

    Article  MathSciNet  MATH  Google Scholar 

  8. Fernandez, A., Baleanu, D.: On some new properties of fractional derivatives with Mittag–Leffler kernel. Commun. Nonlinear Sci. Numer. Simulat. 59, 444–462 (2018)

    Article  MathSciNet  Google Scholar 

  9. Garra, R., Gorenflo, R., Polito, F., Tomovski, Z.: Hilfer–Prabhakar derivatives and some applications. Appl. Math. Comput. 242, 576–589 (2014). https://doi.org/10.1016/j.amc.2014.05.129

    Article  MathSciNet  MATH  Google Scholar 

  10. Grigoletto, E.C., Capelas de Oliveira, E.: Fractional version of the fundamental theorem of calculus. Appl. Math. 4, 23–33 (2013)

    Article  Google Scholar 

  11. Grinko, A.P.: Fractional type integral operators with Kummer’s confluent hypergeometric function in the kernel. Trans. Inst. Mat. 19, 22–31 (2011)

    MATH  Google Scholar 

  12. Hosseini, M., Babakhani, A., Agahi, H., Rasouli, S.H.: On pseudo-fractional integral inequalities related to Hermite–Hadamard type. Soft Comput. 20, 2521–2529 (2016). https://doi.org/10.1007/s00500-015-1910-3

    Article  MATH  Google Scholar 

  13. Kilbas, A.A., Saigo, M., Saxena, R.K.: Solution of Volterra integro-differential equations with generalized Mittag–Leffler function in the kernels. J. Integral Equ. Appl. 14, 377–396 (2002)

    Article  Google Scholar 

  14. Kilbas, A.A., Saigo, M., Saxena, R.K.: Generalized Mittag–Leffler function and generalized fractional calculus operators. Integral Trans. Spec. Funct. 15, 31–49 (2004)

    Article  MathSciNet  Google Scholar 

  15. Kilbas, A.A., Srivastava, H.M., Trujillo, J.: Theory and Applications of the Fractional Differential Equations, vol. 204. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  16. Kuich, W.: Semirings, Automata, Languages. Springer, Berlin (1986)

    Book  Google Scholar 

  17. Mesiar, R., Rybárik, J.: Pseudo-arithmetical operations. Tatra Mt. Math. Publ. 2, 185–192 (1993)

    MathSciNet  MATH  Google Scholar 

  18. Mittag-Leffler, M.G.: Sur la nouvelle fonction \(E_{\alpha }(x)\). C. R. Acad. Sci. 137, 554–558 (1903)

    MATH  Google Scholar 

  19. Oliveira, D.S.: Properties of \(\psi \)-Mittag–Leffler fractional integrals. Rend. Circ. Mat. Palermo II, 1–14 (2021). https://doi.org/10.1007/s12215-021-00605-x

    Article  Google Scholar 

  20. Oliveira, D.S., Capelas de Oliveira, E.: Hilfer–Katugampola fractional derivatives. Comput. Appl. Math. 37, 3672–3690 (2017). https://doi.org/10.1007/s40314-017-0536-8

    Article  MathSciNet  MATH  Google Scholar 

  21. Pap, E.: g-Calculus. Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. Ser. Mat. 23, 145–156 (1993)

    MATH  Google Scholar 

  22. Pap, E.: Pseudo-additive measures and their applications. In: Pap, E. (ed.) Handbook of Measure Theory, pp. 1403–1465. Elsevier, Amsterdam (2002)

    Chapter  Google Scholar 

  23. Pap, E.: Applications of the generated pseudo-analysis to nonlinear partial differential equations. Contemp. Math. 377, 239–260 (2005)

    Article  MathSciNet  Google Scholar 

  24. Pap, E., Štrboja, M.: Generalization of the Jensen inequality for pseudo-integral. Inf. Sci. 180, 543–548 (2010)

    Article  MathSciNet  Google Scholar 

  25. Pap, E., Štrboja, M., Rudas, I.: Pseudo-\(L^p\) space and convergence. Fuzzy Sets Syst. 238, 113–128 (2014). https://doi.org/10.1016/j.fss.2013.06.010

    Article  MATH  Google Scholar 

  26. Prabhakar, T.R.: A singular integral equation with a generalized Mittag–Leffler function in the kernel. Yokohama Math. J. 19, 171–183 (1971)

    MathSciNet  Google Scholar 

  27. Teodoro, G.S., Machado, J.A.T., de Oliveira, E.C.: A review of definitions of fractional derivatives and other operators. J. Comput. Phys. 388, 195–208 (2019). https://doi.org/10.1016/j.jcp.2019.03.008

    Article  MathSciNet  MATH  Google Scholar 

  28. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon (1993)

    MATH  Google Scholar 

  29. Sousa, J.V., Frederico, G.S., de Oliveira, E.C.: \(\psi \)-Hilfer pseudo-fractional operator: new results about fractional calculus. Comput. Appl. Math. 39, 254 (2020). https://doi.org/10.1007/s40314-020-01304-6

    Article  MathSciNet  MATH  Google Scholar 

  30. Sousa, J.V., Frederico, G.S., de Oliveira, E.C.: On the \(\psi \)-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 60, 72–91 (2018)

    Article  MathSciNet  Google Scholar 

  31. Yadollahzadeh, M., Babakhani, A., Neamaty, A.: Hermite Hadamard’s inequality for pseudo-fractional integral operators. Stoch. Anal. Appl. 37, 620–635 (2019). https://doi.org/10.1080/07362994.2019.1605909

    Article  MathSciNet  MATH  Google Scholar 

  32. Yang, X.J.: General Fractional Derivatives: Theory, Methods and Applications. CRC Press, New York (2019)

    Book  Google Scholar 

  33. Wiman, A.: Über den fundamental satz in der theorie der funktionen \(E_{\alpha }(x)\). Acta. Math. 29, 191–201 (1905)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is grateful to Prof. E. Capelas de Oliveira for useful and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Oliveira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, D.S. \(\psi \)-Mittag–Leffler pseudo-fractional operators. J. Pseudo-Differ. Oper. Appl. 12, 40 (2021). https://doi.org/10.1007/s11868-021-00412-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11868-021-00412-z

Keywords

Mathematics Subject Classification

Navigation