Skip to main content

Advertisement

Log in

Propolis and Lentinula edodes extracts can control the angular leaf spot of strawberry by different mechanisms

  • Original Article
  • Published:
Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Strawberry leaf spot caused by Xanthomonas fragariae is one of the main limiting diseases of crops in Brazil, but there are not efficient control strategies. Additionally, the global demand for pesticide-free foods has stimulated research to find low toxicity products to control plant pathogens. Thus, strawberry plants were sprayed with Lentinula edodes polysaccharides (PSHII), propolis extracts (GP1), acibenzolar-s-methyl (ASM) or distilled water (control) and inoculated with the bacterium. Leaf samples were collected to determine phenylalanine ammonia lyase (PAL) and superoxide dismutase (SOD) activities. Antimicrobial activity was checked, based on the effect of the products on CFU and bacterial biofilm. In the cv. Albion, the propolis source GP1 reduced the AUDPC by more than 95%, compared to control, when applied 3 days before inoculation, but PSHII did not differ from control. For cv. San Andreas, GP1 significantly reduced the disease only at 7 days after inoculation. PSHII or ASM promoted significant reduction in all evaluations. Only GP1 inhibited the CFU and biofilm formation of the bacterium and promoted increases in PAL and SOD activities, while PSHII and ASM increased SOD activity. The data suggest that such products have potential for use in programs for control of strawberry diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Aguiar T, Luiz C, Rocha Neto AC, Di Piero RM (2018) Residual polysaccharides from fungi reduce the bacterial spot in tomato plants. Bragantia 77:1–15

    Article  CAS  Google Scholar 

  • Alavanja MCR, Ross MK, Bonner MR (2013) Increased cancer burden among pesticide applicators and others due to pesticide exposure. CA: CA Cancer J Clin 63:120–142

  • Antunes LEC, Carvalho GL, Santos AM (2011) A cultura do morango. 2. ed. Rev. e Ampl. Brasília, DF: Embrapa Informação Tecnológica

  • Bae C, Han SW, Song YR, Kim BY, Lee HJ, Lee JM, Yeam I, Heu S, Oh CS (2015) Infection processes of xylem-colonizing pathogenic bacteria: possible explanations for the scarcity of qualitative disease resistance genes against them in crops. Theor Appl Genet 128:1219–1229

    Article  CAS  PubMed  Google Scholar 

  • Baldin D, Scariot E, Telaxka FJ, Jaski JM, Franzener G, Moura GS, Grosselli MA (2014) Indução de faseolina em feijão e na atividade antibacteriana sobre Xanthomonas axonopodis pv. phaseoli pelo extrato etanólico de própolis. In: I Congresso Paranaense de Agroecologia, Pinhais, PR. p. 1

  • Bankova V (2009) Chemical diversity of propolis makes it a valuable source of new biologically active compounds. Journal of ApiProduct and ApiMedical Science 1:23–28

    Article  Google Scholar 

  • Barros FC, Sagata E, Ferreira LCC, Juliatti FC (2010) Indução de resistência em plantas contra fitopatógenos. Biosciense J 26:231–239

    Google Scholar 

  • Bianchini L, Bedendo IP (1998) Efeito antibiótico da própolis sobre bactérias fitopatogênicas. Sci Agríc 55:149–152

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Burns CJ (2005) Cancer among pesticide manufacturers and applicators. Scand J Work Environ Health 31:9–17

    PubMed  Google Scholar 

  • Calvete EO, Da CRC, Mendonça HFC, Bordignon Júnior CL (2012) Cultivo de morangueiro em ambiente protegido. In: Chavarria G, dos Santos HP (eds) Fruticultura em ambiente protegido. Brasília, DF, Embrapa, pp 149–206

    Google Scholar 

  • Carpentier B, Cerf O (1993) Biofilms and their consequences, with particular reference to hygiene in the food industry. J Appl Bacteriol 75:499–511

    Article  CAS  PubMed  Google Scholar 

  • Cavalcanti FR, Resende MLV, Zacaroni AB, Ribeiro Junior PM, Costa JCB, Souza RM (2006) Acibenzolar-S-metil e Ecolife® na indução de respostas de defesa do tomateiro contra a mancha bacteriana (Xanthomonas vesicatoria). Fitopatol Bras 31:372–380

    Article  Google Scholar 

  • Dalagnol GL (2010) Caracterização da variação genética e epigenética em plantas de macieira e morangueiro obtidas por meio de propagação vegetativa convencional e micropropagação. Tese de doutorado, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil

    Google Scholar 

  • Di Piero RM (2003) Potencial dos cogumelos Lentinula edodes (Shiitake) e Agaricus blazei (Cogumelo-do-Sol) no controle de doenças em plantas de pepino, maracujá e tomate, e purificação parcial de compostos biologicamente ativos. Tese de Doutorado em

  • Falcón AB, Cabrera JC, Costales D, Ramírez MA, Cabrera G, Toledo V, Martínez-Téllez MA (2008) The effect of size and acetylation degree of chitosan derivatives on tobacco plant protection against Phytophthora parasitica nicotianae. World J Microbiol Biotechnol 24:103–112

    Article  CAS  Google Scholar 

  • Fernandes JR, Lopes CAM, Sforcin JM, Funari SRC (1997) Population analysis of susceptibility to propolis in reference strains of Staphylococcus aureus and Escherichia coli. J Venom Anim Toxins Incl Trop Dis 3:287–294

    Article  Google Scholar 

  • Forget G (1993) Balancing the need for pesticides with the risk to human health. In: Impact of Pesticide Use on Health in Developing Countries. Eds. Forget G, Goodman T, De Villiers A. Proceedings of a Symposium Held in Ottawa, pp. 2–16.

  • Ghisalberti EL, Jefferies PR, Lanteri R (1997) Potential drugs from propolis. Mass Spectrometry in Drug Metabolism. Springer 111–130

  • Hahn MG, Albersheim P (1978) Host-Pathogen Interactions. Plant Physiol 62:107–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammerschmidt R (1999) Induced disease resistance: how do induced plants stop pathogens? Physiol Mol Plant Pathol 55:77–84

    Article  CAS  Google Scholar 

  • Herrera JJR, Cabo ML, González A, Pazos I, Pastoriza L (2007) Adhesion and detachment kinetics of several strains of Staphylococcus aureus subsp. aureus under three different experimental conditions. Food Microbiol 24:585–591

    Article  CAS  PubMed  Google Scholar 

  • Klessig DF, Malamy J (1994) The salicylic acid signal in plants. Plant Mol Biol 26:1439–1458

    Article  CAS  PubMed  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Ann Rev Plant Physiol Plant Mol Biol 48:251–275

    Article  CAS  Google Scholar 

  • Lazarevic V, Soldo B, Médico N, Pooley H, Bron S, Karamata D (2005) Bacillus subtilis a-phosphoglucomutase is required for normal cell morphology and biofilm formation. Appl Environ Microbiol 71:39–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linggriani A, Rizal MF, Fauziah E, Suharsini M (2018) Differences in the effects of 0.05% and 0.1% propolis flavonoids on in vitro biofilm formation by Streptococcus mutans from children’s dental plaque. Asian J Pharm Clin Res 11:215–218

    Article  CAS  Google Scholar 

  • Louws FJ, Wilson M, Campbell HL (2001) Field control of bacterial spot and bacterial speck of tomato using a plant activator. Plant Dis 85:481–488

    Article  CAS  PubMed  Google Scholar 

  • Luiz C, Rocha Neto AC, Di Piero RM (2015) Resistance to Xanthomonas gardneri in tomato leaves induced by polysaccharides from plant or microbial origin. J Plant Pathol 97:119–127

    Google Scholar 

  • Luiz C, Rocha Neto AC, Franco PO, Di Peiro RM (2017) Emulsions of essential oils and aloe polysaccharides: antimicrobial activity and resistance inducer potential against Xanthomonas fragariae. Trop Plant Pathol 3:1–12

    Google Scholar 

  • Maas JL, Pooler MR, Galletta GJ (1995) Bacterial angular leaf spot disease of strawberry: present status and prospects for control. Advances in strawberry research 14:18–24

    Google Scholar 

  • Marini D, Mensch R, Freiberger MB, Dartora J, Franzener g, Garcia RC, Stangarlin JR, (2012) Comunicação científica efeito antifúngico de extratos alcoólicos de própolis sobre patógenos da videira. Arquivos do Instituto Biológico 79:305–308

    Article  Google Scholar 

  • McCue P, Zheng Z, Pinkham JL, Shetty K (2000) A model for enhanced pea seedling vigour following low pH and salicylic acid treatments. Process Biochem 35:603–613

    Article  CAS  Google Scholar 

  • Moreira TF (1986) Composição química do própolis: Vitaminas e aminoácidos. Revista Brasileira de Farmacognosia 1:12–19

    Article  CAS  Google Scholar 

  • Moreno MI, Isla MI, Sampietro AR, Vattuone MA (2000) Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J Ethnopharmacol 71:109–114

    Article  CAS  PubMed  Google Scholar 

  • Navarini L, Corte GD, Debona D, Gulart C, Favera DD, Balardin RS (2009) Ação de acibenzolar-s-methyl isolado e em combinação com fungicidas no manejo de doenças na cultura do feijoeiro. Arquivos do Instituto Biológico 76:735–739

    Article  Google Scholar 

  • Ordóñez RM, Zampini IC, Moreno MI, Isla MI (2010) Potential application of Northern Argentine propolis to control some phytopathogenic bacteria. Microbiol Res 166:578–584

    Article  CAS  Google Scholar 

  • Pacumbaba RP, Beyl CA, Pacumbaba Junior RO (1999) Shiitake mycelial leachate supresses growth of some bacterial species and symptoms of bacterial wilt of tomato and lima bean in vitro. Plant Dis 83:20–23

    Article  CAS  PubMed  Google Scholar 

  • Panzeri H, Pedrazzi V, Ogasawara MS, Ito IY, Lara EHG, Gabarra FR (1999) Um dentifrício experimental contendo própolis: avaliação física, microbiológica e clínica. Revista da Associação Brasileira de Odontologia 7:26–30

    Google Scholar 

  • Parada RY, Murakami S, Shimomura N, Otani H (2012) Suppression of fungal and bacterial diseases of cucumber plants by using the spent mushroom substrate of Lyophyllum decastes and Pleurotus eryngii. J Phytopathol 160:390–396

    Article  Google Scholar 

  • Parida AK, Das AB, Mohanty P (2004) Defense potentials to NaCl in a mangrove, Bruguiera parviflora: differential changes of isoforms of some antioxidative enzymes. J Plant Physiol 161:531–542

    Article  CAS  PubMed  Google Scholar 

  • Park YK, Ikegaki M, Abreu JAS, Alcici NMF (1998) Estudo das preparações dos extratos de própolis e suas aplicações. Ciência e Tecnologia de Alimentos 18:313–318

    Article  CAS  Google Scholar 

  • Pereira CS, Guimarães RJ, Pozza EA, Silva AA (2008) Extrato etanólico de própolis (EEP) no controle de cercospora e ferrugem do cafeeiro. Revista Ceres 55:369–376

    Google Scholar 

  • Reichert LJ, Madail JCM (2003) Aspectos socioeconômicos. In: Santos AM, Medeiros ARM (eds). Morango: produção. Embrapa Clima Temperado (Pelotas). Brasília: Embrapa Informação Tecnológica, pp. 12–15

  • Resende MLV, Salgado SML, Chaves ZM (2003) Espécies ativas de oxigênio na resposta de defesa de plantas a patógenos. Fitopatol Bras 28:123–130

    Article  Google Scholar 

  • Santos AM (2003) Cultivares. In: Santos AM, Medeiros ARM (eds) Morango: produção. Embrapa Informação Tecnológica, Brasília, pp 24–30

  • Schuetz M, Smith R, Ellis B (2013) Xylem tissue specification, patterning, and differentiation mechanisms. J Exp Bot 64:11–31

    Article  CAS  PubMed  Google Scholar 

  • Schwengber JEG, Antunes LEC, Strassburger AS, Martins DS, Capelesso AJ, Aumonde TZ, Silva JB (2010) Produção de morangos em sistema de base ecológica. Embrapa Informação Tecnológica, Brasília, DF, pp 9–50

    Google Scholar 

  • Serkedjieva J (2011). Antioxidant effects of plant polyphenols: a case study of a polyphenol-rich extract from Geranium sanguineum L. In: Gupta SD Reactive oxygen species and antioxidants in higher plants. Enfield: Science Publishers 13, pp. 275–293

  • Simões LMC, Gregorio LE, Da Silva Filho AA, De Souza ML, Azzolini AECS, Bastos JK, Lucisano-Valin YM (2004) Effect of Brazilian green propolis on the production of reactive oxygen species by stimulated neutrophils. J Ethnopharmacol 94:59–65

    Article  PubMed  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin- Ciocalteu reagent. Methods Enzymol 299:152–178

  • Spanos GA, Wrolstad RE (1992) Phenolics of apple, pear and white grape juices and their changes with processing and storage-A rewiew. J Agric Food Chem 40:1478–1487

    Article  CAS  Google Scholar 

  • Statsoft (2007) Statistica 8.0. 339–341

  • Vale FXR, Fernandes Filho EI, Liberato JR (2003) Quant: A software plant disease severity assessment. In: 8th International congress of plant pathology, Christchurch, New Zealand, p.105

  • Zárate PP (1999) Análise da atividade de bochechos contendo fluoreto de sódio 0,05%, fluoreto de sódio a 0,2% e própolis 05% acrescida de fluoreto de sódio a 0,05% sobre níveis salivares de Estreptococcus do grupo mutans em paciente cárie-ativos. Tese de Doutorado, Faculdade de Odontologia da Universidade de São Paulo, São Paulo, SP, Brasil

    Google Scholar 

Download references

Acknowledgements

The authors thank to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES for awarding fellowships to first author and thank Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPQ for the researcher grant to last author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robson M. Di Piero.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, B., Coqueiro, D.S.O. & Di Piero, R.M. Propolis and Lentinula edodes extracts can control the angular leaf spot of strawberry by different mechanisms. J Plant Pathol 103, 799–808 (2021). https://doi.org/10.1007/s42161-021-00763-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42161-021-00763-y

Keywords

Navigation