Skip to main content
Log in

Cluster-Model-Embedded First-Principles Study on Structural Stability of Body-Centered-Cubic-Based Ti-Zr-Hf-Nb Refractory High-Entropy Alloys

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Refractory high-entropy alloys (RHEAs) with body-centered-cubic (BCC) structure are a new class of alloy materials and have great potential for high temperature applications. The present work investigated the BCC structural stabilities of Ti-Zr-Nb-Hf RHEAs with both first-principles calculations and experimental characterization. The cluster-plus-glue-atom model (cluster model) for the presentation of chemical short-range ordering (CSRO) in solid solutions was applied to construct the model input for the first-principles method, in which the density functional theory was used. Three cluster structural units were considered, [Ti-Hf14]Nb3, [Ti-Zr8Hf6]Nb3, and [Ti-Zr8Hf4Ti2]Nb3. The corresponding alloys were fabricated, and microstructural characterization was performed. The calculated results of the formation energies and free energies of these three alloys indicate that the [Ti-Zr8Hf4Ti2]Nb3 has the highest BCC structural stability due to its lowest formation energy and free energy. It is well consistent with the experimental observation, where the [Ti-Zr8Hf4Ti2]Nb3 alloy exhibits a single BCC structure without any precipitation, while a small amount of α and/or ω phases would precipitate from the BCC matrix in the other alloys. The cluster-model-embedded first-principles method could provide a new approach for accurate calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. E.P. George, W.A. Curtin, and C.C. Tasan, High Entropy Alloys: A Focused Review of Mechanical Properties and Deformation Mechanisms, Acta Mater., 2020, 188, p 435–474.

    Article  ADS  Google Scholar 

  2. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303.

    Article  Google Scholar 

  3. D.B. Miracle, and O.N. Senkov, A Critical Review of High Entropy Alloys and Related Concepts, Acta Mater., 2016, 122, p 488–511.

    Google Scholar 

  4. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Microstructures and Properties of High-Entropy Alloys, Prog. Mater. Sci., 2014, 61, p 1–93.

    Article  Google Scholar 

  5. T. Yang, Y.L. Zhao, Y. Tong, Z.B. Jiao, J. Wei, J.X. Cai, X.D. Han, D. Chen, A. Hu, J.J. Kai, K. Lu, Y. Liu, and C.T. Liu, Multicomponent Intermetallic Nanoparticles and Superb Mechanical Behaviors of Complex Alloys, Science, 2018, 362(6417), p 933–937.

    Article  ADS  Google Scholar 

  6. D.B. Miracle, High Entropy Alloys as a Bold Step Forward in Alloy Development, Nat. Commun., 2019, 10, p 1805.

    Article  ADS  Google Scholar 

  7. E.P. George, D. Raabe, and R.O. Ritchie, High-Entropy Alloys, Nat. Rev. Mater., 2019, 4, p 515–534.

    Article  ADS  Google Scholar 

  8. Y. Tong, S. Bai, and K. Chen, C/C–ZrC Composite Prepared by Chemical Vapor Infiltration Combined with Alloyed Reactive Melt Infiltration, Ceram. Int., 2012, 38(7), p 5723–5730.

    Article  Google Scholar 

  9. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw, Refractory High-Entropy Alloys, Intermetallics, 2010, 18, p 1758–1765.

    Article  Google Scholar 

  10. H.W. Yao, J.W. Qiao, M.C. Gao, J.A. Hawk, S.G. Ma, H.F. Zhou, and Y. Zhang, NbTaV-(Ti, W) Refractory High-Entropy Alloys: Experiments and Modeling, Mater. Sci. Eng. A, 2016, 674, p 203–211.

    Article  Google Scholar 

  11. M. Zhang, X. Zhou, X. Yu, and J. Li, Synthesis and Characterization of Refractory TiZrNbWMo High-Entropy Alloy Coating by Laser Cladding, Surf. Coat. Technol., 2017, 311, p 321–329.

    Article  Google Scholar 

  12. M. Todai, T. Nagase, T. Hori, A. Matsugaki, A. Sekita, and T. Nakano, Novel TiNbTaZrMo High-Entropy Alloys for Metallic Biomaterials, Scripta Mater., 2017, 129, p 65–68.

    Article  Google Scholar 

  13. H.L. Huang, Y. Wu, J.Y. He, H. Wang, X.J. Liu, K. An, W. Wu, and Z.P. Lu, Phase-Transformation Ductilization of Brittle High-Entropy Alloys via Metastability Engineering, Adv. Mater., 2017, 29(30), p 1701678.

    Article  Google Scholar 

  14. L. Lilensten, J.P. Couzinié, L. Perrière, J. Bourgon, N. Emery, and I. Guillot, New Structure in Refractory High-Entropy Alloys, Mater. Lett., 2014, 132, p 123–125.

    Article  Google Scholar 

  15. H. Song, F. Tian, Q.M. Hu, L. Vitos, Y. Wang, J. Shen, and N. Chen, Local Lattice Distortion in High-Entropy Alloys, Phy. Rev. Mater., 2017, 1(2), p 023404.

    ADS  Google Scholar 

  16. P. Yu, Y. Zhuang, J.P. Chou, J. Wei, Y.C. Lo, and A. Hu, The Influence of Dilute Aluminum and Molybdenum on Stacking Fault and Twin Formation in FeNiCoCr-Based High Entropy Alloys Based on Density Functional Theory, Sci. rep., 2019, 9(1), p 1–8.

    Google Scholar 

  17. Y. Mu, H. Liu, Y. Liu, X. Zhang, Y. Jiang, and T. Dong, An ab Initio and Experimental Studies of the Structure, Mechanical Parameters and State Density on the Refractory High-Entropy Alloy Systems, J. Alloy. Compd., 2017, 714, p 668–680.

    Article  Google Scholar 

  18. B. Grabowski, Y. Ikeda, P. Srinivasan, F. Körmann, C. Freysoldt, A.I. Duff, A. Shappev, and J. Neugebauer, Ab Initio Vibrational Free Energies Including Anharmonicity for Multicomponent Alloys, npj Comput. Mater., 2019, 5(1), p 1–6.

    Article  Google Scholar 

  19. L. Rogal, P. Bobrowski, F. Körmann, S. Divinski, F. Stein, and B. Grabowski, Computationally-Driven Engineering of Sublattice Ordering in a Hexagonal AlHfScTiZr High Entropy Alloy, Sci. Rep., 2017, 7(1), p 1–14.

    Article  Google Scholar 

  20. R. Feng, P.K. Liaw, M.C. Gao, and M. Widom, First-principles Prediction of High-Entropy-Alloy Stability, npj Comput. Mater., 2017, 3(1), p 1–7.

    Article  Google Scholar 

  21. L.Y. Tian, G. Wang, J.S. Harris, D.L. Irving, J. Zhao, and L. Vitos, Alloying Effect on the Elastic Properties of Refractory High-Entropy Alloys, Mater. Des., 2017, 114, p 243–252.

    Article  Google Scholar 

  22. W.Y. Wang, S.L. Shang, Y. Wang, F. Han, K.A. Darling, Y. Wu, X. Xie, O.N. Senkov, J.S. Li, X.D. Hui, K.A. Dahmen, P.K. Liaw, L.J. Kecskes, and Z.K. Liu, Atomic and Electronic Basis for the Serrations of Refractory High-Entropy Alloys, npj Comput. Mater., 2017, 3(1), p 1–10.

    Article  ADS  Google Scholar 

  23. H. Song, F. Tian, and D. Wang, Thermodynamic Properties of Refractory High Entropy Alloys, J. Alloy. Compd., 2016, 682, p 773–777.

    Article  Google Scholar 

  24. A. Zunger, S.H. Wei, L.G. Ferreira, and J.E. Bernard, Special Quasirandom Structures, Phy. Rev. Lett., 1990, 65(3), p 35.

    Article  Google Scholar 

  25. L. Vitos, Computational Quantum Mechanics for Materials Engineers: the EMTO Method and Applications. Springer Science & Business Media, Berlin, 2007.

    Google Scholar 

  26. R. Zhang, S. Zhao, J. Ding, Y. Chong, T. Jia, C. Ophus, M. Asta, R.O. Ritchie, and A.M. Minor, Short-Range Order and its Impact on the CrCoNi Medium-Entropy Alloy, Nature, 2020, 581(7808), p 283–287.

    Article  ADS  Google Scholar 

  27. L.J. Santodonato, Y. Zhang, M. Feygenson, C.M. Parish, M.C. Gao, R.J. Weber, J.C. Neuefeind, Z. Tang, and P.K. Liaw, Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy, Nat. Commun., 2015, 6(1), p 1–13.

    Article  Google Scholar 

  28. D.J. Ding, Q. Yu, M. Asta, and R.O. Ritchie, Tunable Stacking Fault Energies by Tailoring Local Chemical Order in CrCoNi Medium-Entropy Alloys, Proc. Natl. Acad. Sci., 2018, 115(36), p 8919–8924.

    Article  ADS  Google Scholar 

  29. D. Sobieraj, J.S. Wróbel, T. Rygier, K.J. Kurzydłowski, O. El Atwani, A. Devaraj, E. Martinezsaez, and D. Nguyen-Manh, Chemical Short-Range Order in Derivative Cr–Ta–Ti–V–W High Entropy Alloys from the First-Principles Thermodynamic Study, Phys. Chem. Chem. Phys., 2020, 22(41), p 23929–23951.

    Article  Google Scholar 

  30. S. Chen, Z.H. Aitken, S. Pattamatta, Z. Wu, Z.G. Yu, R. Banerjee, D.J. Srolovitz, P.K. Liaw, and Y. Zhang, Chemical-affinity Disparity and Exclusivity Drive Atomic Segregation, Short-Range Ordering, and Cluster Formation in High-Entropy Alloys, Acta Mater., 2021, 206, p 116638.

    Article  Google Scholar 

  31. W. Guo, W. Dmowski, J. Noh, P. Rack, P.K. Liaw, and T. Egami, Local Atomic Structure of a High-Entropy Alloy: An x-ray and Neutron Scattering Study, Metall. Mater. Trans. A, 2013, 44(5), p 1994–1997.

    Article  Google Scholar 

  32. P. Singh, A.V. Smirnov, and D.D. Johnson, Atomic Short-range Order and Incipient Long-range Order in High-Entropy Alloys, Phys. Rev. B, 2015, 91(22), p 224204.

    Article  ADS  Google Scholar 

  33. Y. Ma, Q. Wang, C.L. Li, L.J. Santodonato, M. Feygenson, C. Dong, and P.K. Liaw, Chemical Short-Range Orders and the Induced Structural Transition in High-Entropy Alloys, Scripta Mater., 2018, 144, p 64–68.

    Article  Google Scholar 

  34. F.Y. Tian, D.Y. Lin, X.Y. Gao, Y.F. Zhao, and H.F. Song, A Structural Modeling Approach to Solid Solutions Based on the Similar Atomic Environment, J. Chem. Phys., 2020, 153, p 034101.

    Article  Google Scholar 

  35. J.W. Wu, Z. Yang, J.W. Xian, X.Y. Gao, D.Y. Lin, and H.F. Song, Structural and Thermodynamic Properties of the High-Entropy Alloy AlCoCrFeNi Based on First-Principles Calculations, Front. Mater, 2020, 7, p 590143.

    Article  Google Scholar 

  36. A. Takeuchi, and A. Inoue, Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and its Application to Characterization of the Main Alloying Element, Mater. Trans., 2005, 46, p 2817–2829.

    Article  Google Scholar 

  37. B.B. Jiang, Q. Wang, C. Dong, and P.K. Liaw, Exploration of Phase Structure Evolution Induced by Alloying Elements in Ti Alloys via a Chemical-Short-Range-Order Cluster Model, Sci. Rep., 2019, 9, p 3404–3411.

    Article  ADS  Google Scholar 

  38. H.L. Hong, Q. Wang, C. Dong, and P.K. Liaw, Understanding the Cu-Zn Brass Alloys Using a Short-Range-Order Cluster Model: Significance of Specific Compositions of Industrial Alloys, Sci. Rep., 2014, 4, p 7065.

    Article  ADS  Google Scholar 

  39. C. Pang, Q. Wang, R.Q. Zhang, Q. Li, X. Dai, C. Dong, and P.K. Liaw, Zr–Nb–Ti–Mo–Sn Alloys with Low Young’s Modulus and Low Magnetic Susceptibility Optimized via a Cluster-Plus-Glue-Atom Model, Mater. Sci. Eng. A, 2015, 626, p 369–374.

    Article  Google Scholar 

  40. Y. Ma, Q. Wang, X.Y. Zhou, J.M. Hao, B. Gault, Q.Y. Zhang, C. Dong, and T.G. Nieh, Novel Soft-Magnetic B2-Based Multiprincipal-Element Alloy with a Uniform Distribution of Coherent Body-Centered-Cubic Nanoprecipitates, Adv. Mater., 2021, 33, p 2006723.

    Article  Google Scholar 

  41. Y. Ma, Q. Wang, B.B. Jiang, C.L. Li, J.M. Hao, X.N. Li, C. Dong, and T.G. Nieh, Controlled Formation of Coherent Cuboidal Nanoprecipitates in Body-Centered Cubic High-Entropy Alloys Based on Al2(Ni Co, Fe, Cr)14 Compositions, Acta Mater., 2018, 147, p 213–225.

    Article  ADS  Google Scholar 

  42. Q. Wang, J.C. Han, Y.F. Liu, Z.W. Zhang, C. Dong, and P.K. Liaw, Coherent Precipitation and Stability of Cuboidal Nanoparticles in Body-Centered-Cubic Al0.4Nb0.5Ta0.5TiZr0.8 Refractory High Entropy Alloy, Scripta Mater., 2021, 190, p 40–45.

    Article  Google Scholar 

  43. Y. Okazaki, and E. Gotoh, Comparison of Metal Release from Various Metallic Biomaterials in vitro, Biomaterials, 2005, 26, p 11–21.

    Article  Google Scholar 

  44. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. deGironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch, QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Material, J. Phys.: Condens. Matter., 2009, 21, p 395502.

    Google Scholar 

  45. P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiornonardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carn-imeo, A. Dal Corso, S. de Gironcoli, P. Delugas, R.A. DiStasio Jr., A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko, A. Kokalj, E. Kü,cükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N.L. Nguyen, H.-V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Ponće, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A.P. Seitsonen, A. Smo-gunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, and S. Baroni, Advanced Capabilities for Materials Modelling with Quantum ESPRESSO, J Phys: Condens Matter, 2017, 29, p 465901.

    Google Scholar 

  46. G. Kresse, From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method, Phys. Rev. B, 1999, 59(3), p 1758–1775.

    Article  ADS  Google Scholar 

  47. J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 1996, 77(18), p 3865.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

It was supported by National Defense Basic Scientific Research Project (HTKJ2019KL703001) and the National Natural Science Foundation of China (No. 91860108).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen Li or Qing Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of a special topical focus in the Journal of Phase Equilibria and Diffusion on the Thermodynamics and Kinetics of High-Entropy Alloys. This issue was organized by Dr. Michael Gao, National Energy Technology Laboratory; Dr. Ursula Kattner, NIST; Prof. Raymundo Arroyave, Texas A&M University; and the late Dr. John Morral, The Ohio State University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Liu, Y., Li, Z. et al. Cluster-Model-Embedded First-Principles Study on Structural Stability of Body-Centered-Cubic-Based Ti-Zr-Hf-Nb Refractory High-Entropy Alloys. J. Phase Equilib. Diffus. 42, 647–655 (2021). https://doi.org/10.1007/s11669-021-00899-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-021-00899-5

Keywords

Navigation