Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Actuators with nanofiber mat electrodes: effect of electrode preparation method on actuator performance

Abstract

Electrospinning (ES) is a technique that can produce nanofiber mats from arbitrary polymers. We prepared actuators consisting of nanofiber mat electrodes and ionic liquid gel using three methods and examined the effect of the preparation method on actuator performance. Experimental variables were the spinning solution concentration of the nanofiber, the coating method of poly(3,4-ethyrenedioxythiophene) (PEDOT), the type of polymer nanofiber, and the electrolyte. The results showed that actuators with nanofiber mat electrodes spun from the lowest spinning solution concentration showed a larger strain against an applied voltage, owing to a larger specific surface area. A higher conductivity and flexibility of the nanofiber mat electrode resulted in a larger strain of the actuator. In addition, when the nanofiber mat was covered with a sufficiently thin PEDOT layer by using vapor-phase polymerization, the resultant actuator became translucent. Furthermore, one of the advantages of the ES method is that it can control fiber alignment. By using the aligned nanofiber mat as an electrode, we prepared two types of actuators with different fiber directions and examined the effect of nanofiber alignment on actuator performance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kuhn W, Hargitay B, Katchalsky A, Eisenberg H. Reversible dilation and contraction by changing the state of ionization of high-polymer acid networks. Nature. 1950;165:514–6.

    Article  CAS  Google Scholar 

  2. Osada Y, Okuzaki H, Hori H. A polymer gel with electrically driven motility. Nature. 1992;355:242–4.

    Article  CAS  Google Scholar 

  3. Osada Y. Conversion of chemical into mechanical energy by synthetic polymers (chemomechanical systems). Adv Polym Sci. 1987;82:1.

    Article  CAS  Google Scholar 

  4. Osada Y, Hasebe M. Electrically actuated mechanochemical devices using polyelectrolyte gels. Chem Lett. 1985;14:1285–8.

    Article  Google Scholar 

  5. Haines CS, Lima MD, Li N, Spinks GM, Foroughi J, Madden JDW, et al. Artificial muscles from fishing line and sewing thread. Science. 2014;343:868–72.

    Article  CAS  Google Scholar 

  6. Haines CS, Li N, Spinks GM, Aliev AE, Di J, Baughman RH. New twist on artificial muscles. PNAS. 2016;113:11709–16.

    Article  CAS  Google Scholar 

  7. Smela E. Conjugated polymer actuators for biomedical applications. Adv Mater. 2003;15:481–94.

    Article  CAS  Google Scholar 

  8. Brochu P, Pei Q. Advances in dielectric elastomers for actuators and artificial muscles. Macromol Rapid Commun. 2010;31:10–36.

    Article  CAS  Google Scholar 

  9. Irie M, Fukaminato T, Matsuda K, Kobatake S. Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem Rev. 2014;114:12174–7.

    Article  CAS  Google Scholar 

  10. Maeda S, Hara Y, Yoshida R, Hashimoto S. Active polymer gel actuators. Int J Mol Sci. 2010;11:52–66.

    Article  CAS  Google Scholar 

  11. Sansiñena JM, Olazãbal V, Otero TF, Polo da Fonseca CN, De Paoli MA. A solid state artificial muscle based on polypyrrole and a solid polymeric electrolyte working in air. Chem Commun. 1997;2217–8.

  12. Fukushima T, Asaka K, Kosaka A, Aida T. Fully plastic actuator through layer-by-layer casting with ionic-liquid-based bucky gel. Angew Chem Int Ed. 2005;44:2410–3.

    Article  CAS  Google Scholar 

  13. Persano L, Camposeo A, Pisignano D. Active polymer nanofibers for photonics, electronics, energygeneration and micromechanics. Prog Polym Sci. 2015;43:48–95.

    Article  CAS  Google Scholar 

  14. Gu G, Schmid M, Chiu PW, Minett A, Fraysse J, Kim GT, et al. V2O5 nanofibre sheet actuators. Nat Mater. 2003;2:316–9.

    Article  CAS  Google Scholar 

  15. Baker CO, Shedd B, Innis PC, Whitten PG, Spinks GM, Wallace GG, et al. Monolithic actuator from flash-welded polyaniline nanofibers. Adv Mater. 2008;20:155–8.

    Article  CAS  Google Scholar 

  16. Li D, Huang J, Kaner RB. Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. Acc Chem Res. 2009;42:135–45.

    Article  CAS  Google Scholar 

  17. Zhu Q, Jin Y, Wang W, Sun G, Wang D. Bioinspired smart moisture actuators based on nanoscale cellulose materials and porous, hydrophilic EVOH nanofibrous membranes. ACS Appl Mater Interfaces. 2019;11:1440–8.

    Article  CAS  Google Scholar 

  18. Sakamoto H, Amaya S, Sunahase Y, Suye S. Fabrication and characterization of Fe/polyurethane nanofiber actuator prepared by electrospinning. J Fiber Sci Technol. 2017;73:135–8.

    Article  Google Scholar 

  19. Sunahase Y, Mitsui S, Amaya S, Sakamoto S, Suye S. Effect of electrothermal heat on driving of polymer nanofiber as an actuator. Sens Actuators A. 2019;295:231–6.

    Article  CAS  Google Scholar 

  20. Okuzaki H, Kobayashi K, Yan H. Thermo-responsive nanofiber mats. Macromolecules. 2009;42:5916–8.

    Article  CAS  Google Scholar 

  21. Jiang S, Liu F, Lerch A, Ionov L, Agarwal S. Unusual and superfast temperature-triggered actuators. Adv Mater. 2015;27:4865–70.

    Article  CAS  Google Scholar 

  22. Yun GY, Kim HS, Kim J, Kim K, Yang C. Effect of aligned cellulose film to the performance of electro-active paper actuator. Sens Actuators A. 2008;141:530–5.

    Article  CAS  Google Scholar 

  23. Hong CH, Ki SJ, Jeon JH, Che HL, Park IK, Kee CD, et al. Electroactive bio-composite actuators based on cellulose acetate nanofibers with specially chopped polyaniline nanoparticles through electrospinning. Commposite Sci Tech. 2013;87:135–41.

    Article  CAS  Google Scholar 

  24. Li J, Vadahanambi S, Kee CD, Oh IK. Electrospun fullerenol-cellulose biocompatible actuators. Biomacromolecules 2011;12:2048–54.

    Article  CAS  Google Scholar 

  25. Nakagawa H, Hara Y, Maeda S, Hasimoto S. A pendulum-like motion of nanofiber gel actuator synchronized withexternal periodic pH oscillation. Polymers. 2011;3:405–12.

    Article  CAS  Google Scholar 

  26. Kokubo H, Honda T, Imaizumi S, Dokko K, Watanabe M. Effects of carbon electrode materials on performance of ionic polymer actuators having electric double-layer capacitor structure. Electrochem. 2013;81:849–52.

    Article  CAS  Google Scholar 

  27. Kim SS, Kee CD. Electro-active polymer actuator based on PVDF with bacterial cellulose nano-whiskers (BCNW) via electrospinning method. Int J Precis Eng Manuf. 2014;15:315–21.

    Article  Google Scholar 

  28. Wang F, Ko SY, Park JO, Park S, Kee CD. Electroactive polymer actuator based on PVDF and graphene through electrospinning. Adv Mater Res. 2015;1105:311–4.

    Article  Google Scholar 

  29. Asai H, Kawai T, Shimada N, Sakai T, Nakane K. Effect of spinning condition and fiber alignment on performance of ionic polymer gel actuators with nanofiber mat electrodes. Sens Actuators B. 2015;214:76–81.

    Article  CAS  Google Scholar 

  30. Asai H, Kato S, Shimada N, Nakane K. Developement of a partially-transparent nanofiber mat actuator. J Fiber Sci Technol. 2016;72:195–9.

    Article  Google Scholar 

  31. Asai H, Okumura T, Sakamoto H, Nakane K. Effect of polymer type on the performance of a nanofiber mat actuator. Polym J. 2019;51:523–8.

    Article  CAS  Google Scholar 

  32. Terasawa N, Asaka K. High-performance hybrid (electrostatic double-layer and faradaic capacitor-based) polymer actuators incorporating nickel oxide and vapor-grown carbon nanofibers. Langmuir. 2014;30:14343–51.

    Article  CAS  Google Scholar 

  33. Dillip GR, Banerjee AN, Anitha VC, Raju BDP, Joo SW, Min BK. Oxygen vacancy-induced structural, optical, and enhanced supercapacitive performance of zinc oxide anchored graphitic carbon nanofiber hybrid electrodes. ACS Appl Mater Interfaces. 2016;8:5025–39.

    Article  CAS  Google Scholar 

  34. Sakai T, Matsunaga T, Yamamoto Y, Ito C, Yoshida R, Suzuki S, et al. Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromolecules. Macromolecules. 2008;41:5379–84.

    Article  CAS  Google Scholar 

  35. Li Y, Hu X, Zhou S, Yang L, Yan J, Sun C, et al. A facile process to produce highly conductive poly(3,4-ethylenedioxythiophene) films for ITO-free flexible OLED devices. J Mater Chem C. 2014;2:916–24.

    Article  CAS  Google Scholar 

  36. Nagata R, Yanagi Y, Fujii S, Kataura H, Nishioka Y. Highly conductive DMSO-treated PEDOT:PSS electrodes applied to flexible organic solar cells. IEICE Trans Electron. 2015;E98.C:411–21.

  37. Terasawa N, Asaka K. Performance enhancement of PEDOT:poly (4-styrenesulfonate) actuators by using ethylene glycol. RSC Adv. 2018;8:17732–8.

    Article  CAS  Google Scholar 

  38. Imaizumi S, Kato Y, Kokubo H, Watanabe M. Driving mechanism of ionic polymer actuators having electric double layer capacitor structures. J Phys Chem B. 2012;116:5080–9.

    Article  CAS  Google Scholar 

  39. Kim JY, Jung JH, Joo LJ. Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents. Synth Met. 2002;126:311–6.

    Article  CAS  Google Scholar 

  40. Mengistie DA, Wang PC, Chu CW. Effect of molecular weight of additives on the conductivity of PEDOT:PSS and efficiency for ITO-free organic solar cells. J Mater Chem A. 2013;1:9907–15.

    Article  Google Scholar 

  41. Tsuda R, Kodama K, Ueki T, Kokubo H, Imabayashi S, Watanabe M. LCST-type liquid–liquid phase separation behaviour of poly(ethylene oxide) derivatives in an ionic liquid. Chem Commun. 2008;4939–41.

  42. Okuzaki H, Takagi S, Hishiki F, Tanigawa R. Ionic liquid/polyurethane/PEDOT:PSS composites for electro-active polymer actuators. Sens Actuators B. 2014;194:59–63.

    Article  CAS  Google Scholar 

  43. Safari M, Naji L, Baker RT, Taromi FA. The enhancement effect of lithium ions on actuation performance of ionic liquid-based IPMC soft actuators. Polymer. 2015;76:140–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanako Asai.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asai, H. Actuators with nanofiber mat electrodes: effect of electrode preparation method on actuator performance. Polym J 53, 1083–1091 (2021). https://doi.org/10.1038/s41428-021-00517-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00517-8

Search

Quick links