Skip to main content
Log in

Fast iteration method for nonlinear fractional complex Ginzburg-Landau equations

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, we solve the nonlinear space fractional complex Ginzburg-Landau equations. The motivation of this work is to give a fast numerical method to solve the linear system, which is obtained from the nonlinear space fractional complex Ginzburg-Landau equations. The coefficient matrix of the linear system is the sum of a complex diagonal matrix and a real Toeplitz matrix. The significance of this work is that the new method has a superiority in computation because we can use the circulant preconditioner and the fast Fourier transform to solve the linear system. Numerical examples are tested to illustrate the advantage of the numerical method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. He, D., & Pan, K. (2018). An unconditionally stable linearized difference scheme for the fractional Ginzburg-Landau equation. Numerical Algorithms, 79, 899–925.

    Article  MathSciNet  Google Scholar 

  2. Zhang, L., Zhang, Q., & Sun, H. W. (2020). Exponential Runge-Kutta method for two-dimensional nonlinear fractional complex Ginzburg-Landau equations. Journal of Scientific Computing, 83, 59. https://doi.org/10.1007/s10915-020-01240-x

  3. Zhang, Q., Lin, X., Pan, K., & Ren, Y. (2020). Linearized ADI schemes for two-dimensional space-fractional nonlinear Ginzburg-Landau equation. Computers & Mathematics with Applications, 80, 1201–1220.

    Article  MathSciNet  Google Scholar 

  4. Zhang, Q., Zhang, L., & Sun, H. W. (2021). A three-level finite difference method with preconditioning technique for two-dimensional nonlinear fractional complex Ginzburg-Landau equations. Journal of Computational and Applied Mathematics, 389, 113355.

    Article  MathSciNet  Google Scholar 

  5. Zhang, M., Zhang, G. F., & Liao, L. D. (2019). Fast iterative solvers and simulation for the space fractional Ginzburg-Landau equations. Computers & Mathematics with Applications, 78, 1793–1800.

    Article  MathSciNet  Google Scholar 

  6. Milovanov, A., & Rasmussen, J. (2005). Fractional generalization of the Ginzburg-Landau equation: An unconventional approach to critical phenomena in complex media. Physics Letters A, 337, 75–80.

    Article  Google Scholar 

  7. Mvogo, A., Tambue, A., Ben-Bolie, G., & Kofane, T. (2016). Localized numerical impulse solutions in diffuse neural networks modeled by the complex fractional Ginzburg-Landau equation. Communications in Nonlinear Science and Numerical Simulation, 39, 396–410.

    Article  MathSciNet  Google Scholar 

  8. Tarasov, V., & Zaslavsky, G. (2005). Fractional Ginzburg-Landau equation for fractal media. Physica A, 354, 249–261.

    Article  Google Scholar 

  9. Tarasov, V., & Zaslavsky, G. (2006). Fractional dynamics of coupled oscillators with long-range interaction. Chaos, 16, 023110.

    Article  MathSciNet  Google Scholar 

  10. Guo, B.-L., & Huo, Z.-H. (2012). Well-posedness for the nonlinear fractional Schrödinger equation and inviscid limit behavior of solution for the fractional Ginzburg-Landau equation. Fractional Calculus and Applied Analysis, 16(1), 226–242.

    Article  Google Scholar 

  11. Pu, X., & Guo, B. (2013). Well-posedness and dynamics for the fractional Ginzburg-Landau equation. Applicable Analysis, 92, 318–334.

    Article  MathSciNet  Google Scholar 

  12. Tarasov, V. (2006). Psi-series solution of fractional Ginzburg-Landau equation. Journal of Physics A: Mathematical and General, 39, 8395–8407.

    Article  MathSciNet  Google Scholar 

  13. Wang, P., & Huang, C. (2016). An implicit midpoint difference scheme for the fractional Ginzburg-Landau equation. Journal of Computational Physics, 312, 31–49.

    Article  MathSciNet  Google Scholar 

  14. Wang, P., & Huang, C. (2018). An efficient fourth-order in space difference scheme for the nonlinear fractional Ginzburg-Landau equation. BIT, 58, 783–805.

    Article  MathSciNet  Google Scholar 

  15. Huo, L., Jiang, D., Qi, S. et al. (2021). An AI-based adaptive cognitive modeling and measurement method of network traffic for EIS. Mobile Networks and Applications, 26, 575–585.

    Article  Google Scholar 

  16. Jiang, D., Wang, W., Shi, L., et al. (2018). A compressive sensing-based approach to end-to-end network traffic reconstruction. IEEE Transactions on Network Science and Engineering, 5(3), 1–12.

    Google Scholar 

  17. Jiang, D., Huo, L., & Li, Y. (2018). Fine-granularity inference and estimations to network traffic for SDN. Plos One, 13(5), 1–23.

    Google Scholar 

  18. Qi, S., Jiang, D. & Huo, L. (2021). A prediction approach to end-to-end traffic in space information networks. Mobile Networks and Applications, 26, 726–735.

    Article  Google Scholar 

  19. Wang, Y., Jiang, D., Huo, L. et al. (2021). A new traffic prediction algorithm to software defined networking. Mobile Networks and Applications, 26, 716–725.

    Article  Google Scholar 

  20. Markakis, M. G., Modiano, E., & Tsitsiklis, J. N. (2018). Delay analysis of the max-weight policy under heavy-tailed tracffic via fluid approximations. Mathematics of Operations Research, 43, 460–493.

    Article  MathSciNet  Google Scholar 

  21. Çelik, C., & Duman, M. (2012). Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. Journal of Computational Physics, 231, 1743–1750.

    Article  MathSciNet  Google Scholar 

  22. Saad, Y. (2003). Iterative Methods for Sparse Linear Systems. Philadelphia: SIAM.

    Book  Google Scholar 

  23. Chan, R., & Jin, X. (2007). An Introduction to Iterative Toeplitz Solvers. Philadelphia: SIAM.

    Book  Google Scholar 

  24. Hansen, P. C., Nagy, J. G., & O’Leary, D. P. (2006). Deblurring Images: Matrices, Spectra, and Filtering. Philadelphia: SIAM.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by Training Program from Xuzhou University of Technology (Grant Number XKY2019104).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Chen, L. & Song, X. Fast iteration method for nonlinear fractional complex Ginzburg-Landau equations. Wireless Netw (2021). https://doi.org/10.1007/s11276-021-02669-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11276-021-02669-0

Keywords

Navigation