Skip to main content

Advertisement

Log in

Second harmonic generation in a graphene-based plasmonic waveguide

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Lithium niobate nanophotonic structures have recently become a promising candidate for efficient nonlinear frequency-conversion processes. Here, the second harmonic generation in a graphene-based LN waveguide is theoretically proposed at the telecommunication band. The structure is able to gain high conversion efficiency due to the large nonlinear coefficient of LN and tight field confinement. The subwavelength mode confinement inside the LN layer is strongly influenced by the graphene conductivity. In the presented structure, the nonlinear interaction of propagating plasmons can be widely tuned by slightly change in the surface conductivity of graphene monolayer which is a promising feature for SHG applications in comparison to the conventional structures which rely on geometry variation. According to the results, SH intensity of \(I_{{{\text{SH}}}} = 0.09\,{\text{kW}}/{\text{cm}}^{2}\) is observed at the fundamental wavelength of \(1550\,{\text{nm}}\) with a 7% of nonlinear conversion efficiency. To analyze the geometrical parameters and show the tunability of the configuration, the effect of input frequency and waveguide length on SH output power are demonstrated at \(P_{{{\text{FF}}}} = 1W\) and μc = 0.6 eV. The calculations reveal that the \(P_{{{\text{SH}}}}\) becomes lower by lengthening the waveguide where the maximum output of \(P_{{{\text{SH}}}} = 72.5\,{\text{mW}}\) is obtained at 1 μm-long waveguide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Lithium niobate.

References

  1. Lin, J., et al.: Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator. Phys. Rev. Appl. 6(1), 014002 (2016)

    Article  Google Scholar 

  2. Luo, R., et al.: On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator. Opt. Express 25(20), 24531–24539 (2017)

    Article  Google Scholar 

  3. Hao, Z., et al.: Sum-frequency generation in on-chip lithium niobate microdisk resonators. Photonics Res. 5(6), 623–628 (2017)

    Article  Google Scholar 

  4. Aulin, Y.V., Tuladhar, A., Borguet, E.: Ultrabroadband mid-infrared noncollinear difference frequency generation in a silver thiogallate crystal. Opt. Lett. 43(18), 4402–4405 (2018)

    Article  Google Scholar 

  5. Wu, R., et al.: Lithium niobate micro-disk resonators of quality factors above 107. Opt. Lett. 43(17), 4116–4119 (2018)

    Article  Google Scholar 

  6. Zhang, J., et al.: Highly efficient phase-matched second harmonic generation using an asymmetric plasmonic slot waveguide configuration in hybrid polymer-silicon photonics. Opt. Express 21(12), 14876–14887 (2013)

    Article  Google Scholar 

  7. Sun, Y., et al.: Highly efficient second harmonic generation in hyperbolic metamaterial slot waveguides with large phase matching tolerance. Opt. Express 23(5), 6370–6378 (2015)

    Article  Google Scholar 

  8. Bin Hasan, S., et al.: Second-order nonlinear frequency conversion processes in plasmonic slot waveguides. J. Opt. Soc. Am. B Opt. Phys. 29(7), 1606–1611 (2012)

    Article  Google Scholar 

  9. Huang, T., Tagne, P.M., Fu, S.: Efficient second harmonic generation in internal asymmetric plasmonic slot waveguide. Opt. Express 24(9), 9706–9714 (2016)

    Article  Google Scholar 

  10. Mayy, M., et al.: Toward parametric amplification in plasmonic systems: second harmonic generation enhanced by surface plasmon polaritons. Opt. Express 22(7), 7773–7782 (2014)

    Article  Google Scholar 

  11. Takahashi, Y., et al.: A micrometre-scale Raman silicon laser with a microwatt threshold. Nature 498(7455), 470–474 (2013)

    Article  Google Scholar 

  12. Foster, M.A., et al.: Silicon-chip-based ultrafast optical oscilloscope. Nature 456(7218), 81–84 (2008)

    Article  Google Scholar 

  13. Arizmendi, L.: Photonic applications of lithium niobate crystals. Phys. Status Solidi A 201(2), 253–283 (2004)

    Article  Google Scholar 

  14. Nikogosyan, D.N.: Nonlinear Optical Crystals: A Complete Survey. Springer, Berlin (2006)

    Google Scholar 

  15. Luo, R., et al.: Self-referenced temperature sensing with a lithium niobate microdisk resonator. Opt. Lett. 42(7), 1281–1284 (2017)

    Article  Google Scholar 

  16. Weng, W., Light, P.S., Luiten, A.N.: Ultra-sensitive lithium niobate thermometer based on a dual-resonant whispering-gallery-mode cavity. Opt. Lett. 43(7), 1415–1418 (2018)

    Article  Google Scholar 

  17. Wang, C., et al.: Second harmonic generation in nano-structured thin-film lithium niobate waveguides. Opt. Express 25(6), 6963–6973 (2017)

    Article  Google Scholar 

  18. Wang, C., et al.: Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides. Nat. Commun. 8(1), 1–7 (2017)

    Article  Google Scholar 

  19. Ju, L., et al.: Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6(10), 630 (2011)

    Article  Google Scholar 

  20. Zhou, R., et al.: Confined surface plasmon of fundamental wave and second harmonic waves in graphene nanoribbon arrays. Opt. Express 25(25), 31478–31491 (2017)

    Article  Google Scholar 

  21. Luo, R., et al.: Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide. Optica 5(8), 1006–1011 (2018)

    Article  Google Scholar 

  22. de Oliveira, R.E., Lipson, M., de Matos, C.J.: Electrically controlled silicon nitride ring resonator for quasi-phase matched second-harmonic generation. In: Chen, S., Ji, Q.X., Gong, Q., Yi, X., Xiao, Y.F. (eds.) CLEO: Science and Innovations. Optical Society of America, Washington (2012)

    Google Scholar 

  23. Xiao, F., et al.: Electrical control of second harmonic generation in a graphene-based plasmonic Fano structure. Opt. Express 23(3), 3236–3244 (2015)

    Article  Google Scholar 

  24. Schiek, R., Pertsch, T.: Absolute measurement of the quadratic nonlinear susceptibility of lithium niobate in waveguides. Opt. Mater. Express 2(2), 126–139 (2012)

    Article  Google Scholar 

  25. Klein, R., et al.: Absolute non-linear optical coefficients of LiNbO3 for near stoichiometric crystal compositions. Opt. Mater. 22(2), 171–174 (2003)

    Article  Google Scholar 

  26. Ando, T., Zheng, Y., Suzuura, H.: Dynamical conductivity and zero-mode anomaly in honeycomb lattices. J. Phys. Soc. Jpn. 71(5), 1318–1324 (2002)

    Article  Google Scholar 

  27. Sadaghiani, V.K., et al.: Design of graphene-based hybrid waveguides for nonlinear applications. Opt. Quant. Electron. 51(2), 49 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Bagher Tavakoli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadaghiani, V.K., Tavakoli, M.B. & Horri, A. Second harmonic generation in a graphene-based plasmonic waveguide. Photon Netw Commun 42, 117–122 (2021). https://doi.org/10.1007/s11107-021-00930-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-021-00930-2

Keywords

Navigation