Skip to main content
Log in

Phase space analysis of Tsallis agegraphic dark energy

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Based on the generalized Tsallis entropy and holographic hypothesis, the Tsallis agegraphic dark energy (TADE) was proposed by introducing the timescale as infrared cutoff. In this paper, we analyze the evolution of the universe in the TADE model and the new Tsallis agegraphic dark energy (NTADE) model by considering an interaction between dark matter and dark energy as \(Q=H(\alpha \rho _{m}+\beta \rho _{D})\). Through the phase space and stability analysis, we find an attractor which represents a late-time accelerated expansion phase can exist only in NTADE model. When \(0\le \alpha <1\) and \(\beta =0\), this attractor becomes a dark energy dominated de Sitter solution and the universe can eventually evolve into an accelerated expansion era which is depicted by the \(\Lambda \) cold dark matter model. Thus, the expansion history of the universe can be depicted by the NTADE model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Perlmutter, S., Aldering, G., Goldhaber, G., et al.: Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  2. Riess, A.G., Filippenko, A.V., Challis, P., et al.: Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  3. Spergel, D.N., et al.: Astrophys. J. Suppl. 148, 175 (2003)

    Article  ADS  Google Scholar 

  4. Spergel, D.N., et al.: Astrophys. J. Suppl. 170, 337 (2007)

    Article  ADS  Google Scholar 

  5. Tegmark, M., et al.: Phys. Rev. D 69, 103501 (2004)

    Article  ADS  Google Scholar 

  6. Eisenstein, D.J., et al.: Astron. J. 633, 560 (2005)

    Article  Google Scholar 

  7. Collaboration, Planck: A & A. 594, A13 (2016)

    Article  ADS  Google Scholar 

  8. Weinberg, S.: Rev. Mod. Phys. 61, 1 (1989)

    Article  ADS  Google Scholar 

  9. Steinhardt, P., Wang, L., Zlatev, I.: Phys. Rev. D 59, 123504 (1999)

    Article  ADS  Google Scholar 

  10. Wetterich, C.: Nucl. Phys. B 302, 668 (1988)

    Article  ADS  Google Scholar 

  11. Ratra, B., Peebles, P.J.E.: Phys. Rev. D 37, 3406 (1988)

    Article  ADS  Google Scholar 

  12. Caldwell, R.R., Dave, R., Steinhardt, P.J.: Phys. Rev. Lett. 80, 1582 (1998)

    Article  ADS  Google Scholar 

  13. Caldwell, R.R.: Phys. Lett. B 545, 23 (2002)

    Article  ADS  Google Scholar 

  14. Caldwell, R.R., Kamionkowski, M., Weinberg, N.N.: Phys. Rev. Lett. 91, 071301 (2003)

    Article  ADS  Google Scholar 

  15. Feng, B., Wang, X., Zhang, X.: Phys. Lett. B 607, 35 (2005)

    Article  ADS  Google Scholar 

  16. Feng, B., Li, M., Piao, Y., Zhang, X.: Phys. Lett. B 634, 101 (2006)

    Article  ADS  Google Scholar 

  17. Guo, Z., Piao, Y., Zhang, X., Zhang, Y.: Phys. Lett. B 608, 177 (2005)

    Article  ADS  Google Scholar 

  18. Chiba, T., Okabe, T., Yamaguchi, M.: Phys. Rev. D 62, 023511 (2000)

    Article  ADS  Google Scholar 

  19. Armendariz-Picon, C., Mukhanov, V.F., Steinhardt, P.J.: Phys. Rev. D 63, 103510 (2001)

    Article  ADS  Google Scholar 

  20. Kamenshchik, A., Moschella, U., Pasquier, V.: Phys. Lett. B 511, 265 (2001)

    Article  ADS  Google Scholar 

  21. Cai, R.: Phys. Lett. B 657, 228 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  22. Wei, H., Cai, R.: Phys. Lett. B 655, 1 (2007)

    Article  ADS  Google Scholar 

  23. Wei, H., Cai, R.: Phys. Lett. B 660, 113 (2008)

    Article  ADS  Google Scholar 

  24. Cohen, A.G., Kaplan, D.B., Nelson, A.E.: Phys. Rev. Lett. 82, 4971 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  25. Hsu, S.: Phys. Lett. B 594, 13 (2004)

    Article  ADS  Google Scholar 

  26. Li, M.: Phys. Lett. B 603, 1 (2004)

    Article  ADS  Google Scholar 

  27. Wang, S., Wang, Y., Li, M.: Phys. Rep. 696, 1 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  28. Horava, P., Minic, D.: Phys. Rev. Lett. 85, 1610 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  29. Thomas, S.: Phys. Rev. Lett. 89, 081301 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  30. Shen, J., Wang, B., Abdalla, E., Su, R.K.: Phys. Lett. B 609, 200 (2005)

    Article  ADS  Google Scholar 

  31. Guberina, B., Horvat, R., Nikolic, H.: J. Cosmol. Astropart. Phys. 01, 012 (2007)

    Article  ADS  Google Scholar 

  32. Sheykhi, A.: Phys. Lett. B 680, 113 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  33. Sheykhi, A.: Phys. Lett. B 681, 205 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  34. Sheykhi, A.: Phys. Lett. B 682, 329 (2010)

    Article  ADS  Google Scholar 

  35. Sheykhi, A., et al.: Gen. Relativ. Gravit. 44, 623 (2012)

    Article  ADS  Google Scholar 

  36. Ghaffari, S., Dehghani, M., Sheykhi, A.: Phys. Rev. D 89, 123009 (2014)

    Article  ADS  Google Scholar 

  37. Huang, Q., Li, M.: JCAP 08, 013 (2004)

    Article  ADS  Google Scholar 

  38. Nojiri, S., Odintsov, S.D.: Eur. Phys. J. C 77, 528 (2017)

    Article  ADS  Google Scholar 

  39. Granda, L.N., Oliveros, A.: Phys. Lett. B 669, 275 (2008)

    Article  ADS  Google Scholar 

  40. Wang, B., Gong, Y., Abdalla, E.: Phys. Lett. B 624, 141 (2005)

    Article  ADS  Google Scholar 

  41. Setare, M.R.: Phys. Lett. B 642, 1 (2006)

    Article  ADS  Google Scholar 

  42. Wang, B., Abdalla, E., Su, R.K.: Phys. Lett. B 611, 21 (2005)

    Article  ADS  Google Scholar 

  43. Feng, C., Wang, B., Gong, Y., Su, R.K.: JCAP 09, 005 (2007)

    Article  ADS  Google Scholar 

  44. Zimdahl, W., Pavon, D.: Class. Quantum Gravity 24, 5461 (2007)

    Article  ADS  Google Scholar 

  45. Sheykhi, A.: Phys. Rev. D 84, 107302 (2011)

    Article  ADS  Google Scholar 

  46. Zhang, X., Wu, F.: Phys. Rev. D 72, 043524 (2005)

    Article  ADS  Google Scholar 

  47. Zhang, X., Wu, F.: Phys. Rev. D 76, 023502 (2007)

    Article  ADS  Google Scholar 

  48. Huang, Q., Gong, Y.: JCAP 08, 006 (2004)

    Article  ADS  Google Scholar 

  49. Enqvist, K., Hannestad, S., Sloth, M.S.: JCAP 02, 004 (2005)

    Article  ADS  Google Scholar 

  50. Tsallis, C., Cirto, L.J.L.: Eur. Phys. J. C 73, 2487 (2013)

    Article  ADS  Google Scholar 

  51. Tavayef, M., Sheykhi, A., Bamba, K., Moradpour, H.: Phys. Lett. B 781, 195 (2018)

    Article  ADS  Google Scholar 

  52. Huang, Q., Huang, H., Chen, J., Zhang, L., Tu, F.: Class. Quantum Grav. 36, 175001 (2019)

    Article  ADS  Google Scholar 

  53. Kim, K., Lee, H., Myung, Y.: Phys. Lett. B 660, 118 (2008)

    Article  ADS  Google Scholar 

  54. Zadeh, M., Sheykhi, A., Moradpour, H.: Mod. Phys. Lett. A 34, 1950086 (2019)

    Article  ADS  Google Scholar 

  55. Copeland, E.J., Liddle, A.R., Wands, D.: Phys. Rev. D 57, 4686 (1998)

    Article  ADS  Google Scholar 

  56. Holden, D., Wands, D.: Class. Quantum Grav. 15, 3271 (1998)

    Article  ADS  Google Scholar 

  57. Roy, N., Banerjee, N.: Eur. Phys. J. Plus 129, 162 (2014)

    Article  Google Scholar 

  58. Roy, N., Banerjee, N.: Annals Phys. 356, 452 (2015)

    Article  ADS  Google Scholar 

  59. Dutta, J., Khyllep, W., Tamanini, N.: Phys. Rev. D 93, 063004 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  60. Bhatia, A.S., Sur, S.: Int. J. Mod. Phys. D 26, 1750149 (2017)

    Article  ADS  Google Scholar 

  61. J. Sola, A. Gomez-Valent and J. de Cruz Perez, Mod. Phys. Lett. A 32, 1750054 (2017)

  62. Carloni, S., Leach, J., Capozziello, S., Dunsby, P.: Class. Quantum Grav. 25, 035008 (2008)

    Article  ADS  Google Scholar 

  63. Guo, J., Frolov, A.: Phys. Rev. D 88, 124036 (2013)

    Article  ADS  Google Scholar 

  64. Wu, P., Yu, H.: Phys. Lett. B 629, 176 (2010)

    Article  ADS  Google Scholar 

  65. Wei, H.: Phys. Lett. B 712, 430 (2012)

    Article  ADS  Google Scholar 

  66. Fu, X., Yu, H., Wu, P.: Phys. Rev. D 78, 063001 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  67. Wu, P., Zhang, S.: JCAP 06, 007 (2008)

    Article  ADS  Google Scholar 

  68. Dutta, J., Khyllep, W., Saridakis, E., Tamanini, N., Vagnozzi, S.: JCAP 02, 041 (2018)

    Article  ADS  Google Scholar 

  69. Bargach, A., Bargach, F., Ouali, T.: Nuclear Physics B 940, 10 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  70. Setare, M.R., Vagenas, E.C.: Int. J. Mod. Phys. D 18, 147 (2009)

    Article  ADS  Google Scholar 

  71. Banerjee, N., Roy, N.: Gen. Relativ. Gravit 47, 92 (2015)

    Article  ADS  Google Scholar 

  72. Bahamonde, S., Bohmer, C.G., Carloni, S., Copeland, E.J., Fang, W., Tamanini, N.: Phys. Rep. 775–777, 1 (2018)

    Article  ADS  Google Scholar 

  73. Jahromi, A.S., Moosavi, S.A., Moradpour, H., Graca, J.P.M., Lobo, I.P., Salako, I.G., Jawad, A.: Phys. Lett. B 780, 21 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  74. Olivares, G., Atrio-Barandela, F., Pavon, D.: Phys. Rev. D 77, 063513 (2008)

    Article  ADS  Google Scholar 

  75. Caldera-Cabral, G., Maartens, R., Urena-Lopez, L.A.: Phys. Rev. D 79, 063518 (2009)

    Article  ADS  Google Scholar 

  76. Quartin, M., Calvao, M.O., Joras, S.E., Reis, R.R., Waga, I.: J. Cosmol. Astropart. Phys. 05, 007 (2008)

    Article  ADS  Google Scholar 

  77. Li, S., Ma, Y.: Eur. Phys. J. C 68, 227 (2010)

    Article  ADS  Google Scholar 

  78. Bohmer, C., Chan, N., Lazkoz, R.: Phys. Lett. B 714, 11 (2012)

    Article  ADS  Google Scholar 

  79. Dutta, J., Khyllep, W., Tamanini, N.: Phys. Rev. D 95, 023515 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  80. Huang, Q., Zhang, R., Chen, J., Huang, H., Tu, F.: Mod. Phys. Lett. A 36, 2150052 (2021)

    Article  ADS  Google Scholar 

  81. Dutta, J., Khyllep, W., Zonunmawia, H.: Eur. Phys. J. C 79, 369 (2019)

    Article  ADS  Google Scholar 

  82. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (1990)

    Book  MATH  Google Scholar 

  83. Perko, L.: Differential Equations and Dynamical Systems. Springer-Verlag, Berlin (1991)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants Nos. 11865018, the Foundation of the Guizhou Provincial Education Department of China under Grants Nos. KY[2018]312, the Science and Technology Foundation of Guizhou Province of China under Grant No. [2019]1011, the Discipline and Master’s Site Construction Project of Guiyang University by Guiyang City Financial Support Guiyang University [JX-2020], the Doctoral Foundation of Zunyi Normal University of China under Grants No. BS[2017]07.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai Huang or Qihong Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Centre manifold theory

In this Appendix, we briefly review the centre manifold theory and the detailed presentation is give in Ref. [69, 72, 78, 79, 82, 83]. If one of the eigenvalues of a critical point vanishes, linear stability theory fails to provide information on the stability of this point. Then, centre manifold theory can be applied to analyze the stability of this critical point. The main aim of the centre manifold theory is to analyze the dynamics on the dimensionally reduced space. This reduced space, which is identified by the eigenvectors of the zero eigenvalues, is called centre manifold and its existence is always guaranteed.

In general, we assume the critical point is located at the origin of this phase space. Then, an arbitrary dynamical system with negative and zero eigenvalues can be written in the form

$$\begin{aligned} u'= & {} Au+f(u,v),\nonumber \\ v'= & {} Bv+g(u,v), \end{aligned}$$
(22)

where \((u,v)\in R^{c}\times R^{s}\) and

$$\begin{aligned} f(0,0)= & {} 0, \quad Df(0,0)=0,\nonumber \\ g(0,0)= & {} 0, \quad Dg(0,0)=0. \end{aligned}$$
(23)

Here, Df denotes the matrix of first derivative of function f, A is a \(c\times c\) matrix with eigenvalues have zero real parts and B is a \(s\times s\) matrix with eigenvalues have negative real parts. The centre manifold is characterized by a function \(h: R^{c}\rightarrow R^{s}\) and is defined as

$$\begin{aligned} W^{c}(0)=\{(u,v)\in R^{c}\times R^{s}:v=h(u),\mid u\mid <\delta ,h(0)=0,Dh(0)=0\}, \end{aligned}$$
(24)

for \(\delta \) sufficiently small. The dynamics of system  (22) restricted to the centre manifold \(W^{c}(0)\) is determined by

$$\begin{aligned} u'=Au+f(u,h(u)), \end{aligned}$$
(25)

for a sufficiently small \(u\in R^{c}\). The stability properties of the reduced system  (25) implies the stability properties of the full system  (22). Now, the problem becomes how to determine h. In Ref. [82, 83], h was proven to satisfy

$$\begin{aligned} Nh(u)=Dh(u)[Au+f(u,h(u))]-Bh(u)-g(u,h(u))=0, \end{aligned}$$
(26)

from which h can be found and inserted into  (25) to analyze the reduced system. However, it is impossible to solve Eq. (26) analytically. Fortunately, the analytical solution of h is not needed since we are only interested in the reduced system near this critical point, and it can be approximated by a power series expansion \(h(u)=a u^{2}+b u^{3}+O(u^{4})\).

Appendix B: Centre manifold dynamics for \(A_{5}\)

In this section, we apply centre manifold theory to analyze the stability of point \(P_{5}\). Following [79], we move point \(A_{5}(\frac{\beta }{3-\alpha +\beta },\frac{3-\alpha }{3-\alpha +\beta },0)\) to the origin of this phase space by using the transformation \(x\rightarrow x+\frac{\beta }{3-\alpha +\beta }\), \(y\rightarrow y+\frac{3-\alpha }{3-\alpha +\beta }\), \(z\rightarrow z\). Then, Eq. (15) becomes

$$\begin{aligned} x'= & {} -3\Big (x+\frac{\beta }{3-\alpha +\beta }\Big )+\alpha \Big (x+\frac{\beta }{3-\alpha +\beta }\Big )\nonumber \\&\quad +\beta \Big (y+\frac{3-\alpha }{3-\alpha +\beta }\Big )+2\Big (x+\frac{\beta }{3-\alpha +\beta }\Big )\zeta ,\nonumber \\ y'= & {} (2\delta -4)\Big (y+\frac{3-\alpha }{3-\alpha +\beta }\Big ) z+2\Big (y+\frac{3-\alpha }{3-\alpha +\beta }\Big )\zeta ,\nonumber \\ z'= & {} -z^{2}+z\zeta , \end{aligned}$$
(27)

with

$$\begin{aligned}&\zeta =2-2\Big (y+\frac{3-\alpha }{3-\alpha +\beta }\Big )-\frac{1}{2}\Big (x+\frac{\beta }{3-\alpha +\beta }\Big )\\&\quad -\frac{1}{2}\bigg [\alpha \Big (x+\frac{\beta }{3-\alpha +\beta }\Big )+\beta \Big (y+\frac{3-\alpha }{3-\alpha +\beta }\Big )\bigg ]-(\delta -2)\Big (y+\frac{3-\alpha }{3-\alpha +\beta }\Big ) z. \end{aligned}$$

After using the eigenvectors of the stability matrix of this system, we can introduce another set of new coordinates

$$\begin{aligned} \left( \begin{array}{c} X\\ Y\\ Z\\ \end{array} \right) = \left( \begin{array}{ccc} 0 &{} 0 &{} 1\\ \frac{3-\alpha }{3-\alpha +\beta } &{} \frac{3-\alpha }{3-\alpha +\beta } &{} 0\\ \frac{-3+\alpha }{3-\alpha +\beta } &{} \frac{\alpha }{3-\alpha +\beta } &{} \frac{2(2-\delta )\beta }{(3-\alpha +\beta )^{2}}\\ \end{array} \right) \left( \begin{array}{c} x\\ y\\ z\\ \end{array} \right) . \end{aligned}$$
(28)

In these coordinates, the system of equations are transformed into

$$\begin{aligned} \left( \begin{array}{c} X'\\ Y'\\ Z'\\ \end{array} \right) = \left( \begin{array}{ccc} 0 &{} 0 &{} 0\\ 0 &{} -4 &{} 0\\ 0 &{} 0 &{} \alpha -3\\ \end{array} \right) \left( \begin{array}{c} X\\ Y\\ Z\\ \end{array} \right) + \left( \begin{array}{c} f\\ g_{1}\\ g_{2}\\ \end{array} \right) \end{aligned}$$
(29)

with

$$\begin{aligned} f= & {} -\frac{[4Y+(3-\alpha )Z](3-\alpha +\beta )}{2(3-\alpha )}X+[1+2Y+2Z-(1+Y+Z)\delta ]X^{2}\nonumber \\&\quad -\frac{2\beta (\delta -2)^{2}}{(3-\alpha +\beta )^{2}}X^{3}, \end{aligned}$$
(30)
$$\begin{aligned} g_{1}= & {} \Big [(-3+\alpha -\beta )Z+2(2-\delta )(1+Z)X-\frac{4\beta (\delta -2)^{2}}{(3-\alpha +\beta )^{2}}X^{2}\Big ]Y\nonumber \\&\quad +\Big [-4+\frac{4\beta }{\alpha -3}-2(\delta -2)X\Big ]Y^{2}, \end{aligned}$$
(31)
$$\begin{aligned} g_{2}= & {} \Big [\frac{(-6+2\alpha -\beta )(\delta -2)}{3-\alpha +\beta }X+\frac{4(3-\alpha +\beta )}{\alpha -3}Y+(4-2\delta )XY-\frac{6\beta (\delta -2)^{2}}{(3-\alpha +\beta )}X^{2}\Big ]Z\nonumber \\&\quad +[-3+\alpha -\beta -2(\delta -2)X]Z^{2}-\frac{2\beta (\alpha -1)(\delta -2)}{(\alpha -3)(-3+\alpha -\beta )}XY-\frac{2\beta (\delta -2)^{2}}{(3-\alpha +\beta )^{2}}YX^{2}\nonumber \\&\quad -\frac{2\beta (\delta -2)[9-3\alpha -\beta +(-3+\alpha +\beta )\delta ]}{(-3+\alpha -\beta )^{3}}X^{2}-\frac{4\beta ^{2}(\delta -2)^{3}}{(3-\alpha +\beta )}X^{3}. \end{aligned}$$
(32)

Compare this dynamical system with Eq. (22), we obtain

$$\begin{aligned} A=0, \quad B= \left( \begin{array}{cc} -4 &{} 0\\ 0 &{} \alpha -3\\ \end{array} \right) , \quad g= \left( \begin{array}{c} g_{1}\\ g_{2}\\ \end{array} \right) . \end{aligned}$$
(33)

Now, the centre manifold can be assumed to the form

$$\begin{aligned} h= \left( \begin{array}{c} a_{2}X^{2}+a_{3}X^{3}+O(X^{4})\\ b_{2}X^{2}+b_{3}X^{3}+O(X^{4})\\ \end{array} \right) , \end{aligned}$$
(34)

and Eq. (26) becomes

$$\begin{aligned} N= \left( \begin{array}{c} 4a_{2}X^{2}+(-2a_{2}+4a_{3})X^{3}+O(X^{4})\\ \sigma _{1}X^{2}+\sigma _{2}X^{3}+O(X^{4})\\ \end{array} \right) =0, \end{aligned}$$
(35)

with

$$\begin{aligned}&\sigma _{1}=\frac{2\beta (\delta -2)[9-3\alpha -\beta +(-3+\alpha +\beta )\delta ]}{(-3+\alpha -\beta )^{3}}+(3-\alpha )b_{2},\\&\sigma _{2}=\frac{4\beta ^{2}(\delta -2)^{3}}{(3-\alpha +\beta )^{4}}+\frac{2\beta (\alpha -1)(\delta -2)a_{2}}{(\alpha -3)(-3+\alpha -\beta )}+\frac{(6-2\alpha +\beta \delta )b_{2}}{-3+\alpha -\beta }+(3-\alpha )b_{3}. \end{aligned}$$

where \(a_{2}\), \(a_{3}\), \(b_{2}\) and \(b_{3}\) are computed as

$$\begin{aligned} a_{2}= & {} 0, \quad a_{3}=0,\\ b_{2}= & {} \frac{2\beta (\delta -2)[9-3\alpha -\beta +(-3+\alpha +\beta )\delta ]}{(\alpha -3)(-3+\alpha -\beta )^{3}},\\ b_{3}= & {} 2\beta (2-\delta )\Big [\frac{2(\alpha -3)(9-3\alpha -5\beta )+[2(\alpha -3)^{2}+13(\alpha -3)\beta +\beta ^{2}]\delta +\beta (9-3\alpha -\beta )\delta ^{2}}{(\alpha -3)^{2}(3-\alpha +\beta )^{4}}\Big ]. \end{aligned}$$

Then, the dynamics of the system restricted to the centre manifold is determined by

$$\begin{aligned} X'=AX+f(X,h(X))=(1-\delta )X^{2}-\frac{\beta (\delta -1)(\delta -2)}{(3-\alpha )(3-\alpha +\beta )}X^{3}+O(X^{4}). \end{aligned}$$
(36)

It is obvious from this result that \(A_{5}\) is unstable since the first term is even power. For any equation of the type \(X'=\gamma X^{n}\), where \(\gamma \) is a constant and n is a positive integer number, the critical point can be stable only for \(\gamma <0\) and n is odd-parity. Otherwise, it is unstable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Huang, Q. & Zhang, R. Phase space analysis of Tsallis agegraphic dark energy. Gen Relativ Gravit 53, 63 (2021). https://doi.org/10.1007/s10714-021-02823-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-021-02823-1

Keywords

Navigation