Skip to main content
Log in

The Use of Rare Earth Metals in Al–Si–Cu Casting Alloys

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

In the current study, a series of forty-two cast Al–Si–Cu–Mg -based alloys with additions of transition metals (V, Cr, Ni) and rare earth (RE) metals (La, Ce) were prepared and mechanically tested in the as-cast, T5, T6 and T7 heat treatment conditions. The microstructures were investigated using optical microscopy, scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). The volume fraction, aspect ratio, and roundness of second phase constituents were determined by ImageJ analysis software. The microstructural observations show that the RE elements have a greater impact on the microstructure of cast alloys, resulting in the formation of new types of intermetallic phases containing RE, Al–Si–Cu–RE and Al–Ti–RE. With regard to the mechanical properties, it was found that the highest strength of the casting alloys was found with 0–0.2 wt% addition of Ce/La. However, the addition of more than 0.2 wt% induced a detrimental effect on the mechanical properties due to precipitation of a high volume fraction of insoluble intermetallic compounds containing RE. Excessive addition of RE elements leads to the formation of a coarse intermetallic compound along the grain boundary. Besides, RE elements have a marginal modification effect in terms of changing the morphology of the eutectic Si particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. K. Nogita et al., Mechanisms of eutectic solidification in Al–Si alloys modified with Ba, Ca, Y and Yb. J. Light Met. 1(4), 219–228 (2001)

    Google Scholar 

  2. B. Li, F. Kong, Y. Chen, Effect of yttrium addition on microstructures and room temperature tensile properties of Ti–47 Al alloy. J. Rare Earths 24(3), 352–356 (2006)

    Google Scholar 

  3. H.Z. Li et al., Effect of Y content on microstructure and mechanical properties of 2519 aluminum alloy. Trans. Nonferrous Met. Soc. China 17(6), 1194–1198 (2007)

    CAS  Google Scholar 

  4. L. Zheng, H. Yongmei, Effect of yttrium on the microstructure of a semi-solid A356 Al alloy. Rare Met. 27(5), 536–540 (2008)

    Google Scholar 

  5. M. Li et al., The effect of Y on the hot-tearing resistance of Al–5wt% Cu based alloy. Mater. Des. 31(5), 2483–2487 (2010)

    CAS  Google Scholar 

  6. B. Li et al., Effects of yttrium and heat treatment on the microstructure and tensile properties of Al–7.5 Si–0.5 Mg alloy. Mater. Des. 32(3), 1617–1622 (2011)

    CAS  Google Scholar 

  7. J.H. Li, P. Schumacher, Effect of Y addition and cooling rate on refinement of eutectic Si in Al–5 wt% Si alloys. Int, J. Cast Met. Res. 25(6), 347–357 (2012)

    CAS  Google Scholar 

  8. B. Wan et al., Effect of trace yttrium addition on the microstructure and tensile properties of recycled Al–7Si–0.3 Mg–1.0 Fe casting alloys. Mater. Sci. Eng. A 666, 165–175 (2016)

    CAS  Google Scholar 

  9. M.O. Shabani, A. Mazahery, Automotive copper and magnesium containing cast aluminium alloys: report on the correlation between Yttrium modified microstructure and mechanical properties. Russ. J. Non-Ferrous Met. 55(5), 436–442 (2014)

    Google Scholar 

  10. M. Sheng et al., Effects of Y and Y combined with Al-5Ti-1B on the microstructure and mechanical properties of hypoeutectic Al–Si alloy. JOM 67(2), 330–335 (2015)

    CAS  Google Scholar 

  11. Z.R. Nie, et al. Research on rare earth in aluminum. In Materials Science Forum (Trans Tech Publ., 2002)

  12. Z. Nie, et al. Advanced aluminum alloys containing rare-earth erbium. In Materials Forum (2004)

  13. G.F. Xu et al., Effect of trace rare earth element Er on Al–Zn–Mg alloy. Trans. Nonferrous Met. Soc. China 16(3), 598–603 (2006)

    CAS  Google Scholar 

  14. Y.T. Li, et al. Alloying behavior of rare-earth Er in Al–Cu–Mg–Ag alloy. In Materials Science Forum (Trans Tech Publ., 2007)

  15. S.P. Wen et al., The effect of erbium on the microstructure and mechanical properties of Al–Mg–Mn–Zr alloy. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 516(1–2), 42–49 (2009)

    Google Scholar 

  16. K. Nogita et al., The role of trace element segregation in the eutectic modification of hypoeutectic Al–Si alloys. J. Alloys Compd. 489(2), 415–420 (2010)

    CAS  Google Scholar 

  17. X. Pengfei et al., Effect of erbium on properties and microstructure of Al–Si eutectic alloy. J. Rare Earths 28(6), 927–930 (2010)

    Google Scholar 

  18. C. Booth-Morrison, D.N. Seidman, D.C. Dunand, Effect of Er additions on ambient and high-temperature strength of precipitation-strengthened Al-Zr-Sc-Si alloys. Acta Materialia 60(8), 3643–3654 (2012)

    CAS  Google Scholar 

  19. X.W. Hu et al., Effects of rare earth Er additions on microstructure development and mechanical properties of die-cast ADC12 aluminum alloy. J. Alloys Compd. 538, 21–27 (2012)

    CAS  Google Scholar 

  20. X.D. Wang et al., Microstructure and mechanical properties of Al-Mg-Mn alloy with erbium. Rare Met. 31(3), 237–243 (2012)

    Google Scholar 

  21. Z.M. Shi et al., Effects of erbium modification on the microstructure and mechanical properties of A356 aluminum alloys. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 626, 102–107 (2015)

    CAS  Google Scholar 

  22. M. Colombo, E. Gariboldi, A. Morri, Er addition to Al-Si-Mg-based casting alloy: Effects on microstructure, room and high temperature mechanical properties. Journal of Alloys and Compounds 708, 1234–1244 (2017)

    CAS  Google Scholar 

  23. M. Colombo, E. Gariboldi, A. Morri, Influences of different Zr additions on the microstructure, room and high temperature mechanical properties of an Al–7Si–0.4 Mg alloy modified with 0.25% Er. Mater. Sci. Eng. A 713, 151–160 (2017)

    Google Scholar 

  24. Q.L. Li, et al. Effect of rare earth Er on microstructure and mechanical properties of cast Al–Si–Mg alloy. In Materials Science Forum 35. (Trans Tech Publ., 2017)

  25. C. Xu et al., Effect of Al–P–Ti–TiC–Nd2O3 modifier on the microstructure and mechanical properties of hypereutectic Al–20wt% Si alloy. Mater. Sci. Eng. A 452, 341–346 (2007)

    Google Scholar 

  26. W.X. Shi et al., Effect of Nd on microstructure and wear resistance of hypereutectic Al–20% Si alloy. J. Alloys Compd. 508(2), 480–485 (2010)

    CAS  Google Scholar 

  27. S. Weixi et al., Effect of neodymium on primary silicon and mechanical properties of hypereutectic Al–15% Si alloy. J. Rare Earths 28, 367–370 (2010)

    Google Scholar 

  28. X. Ren et al., Effect of Nd on microstructure and properties of 2A70 alloy. J. Alloys Compd. 731, 1014–1021 (2017)

    Google Scholar 

  29. Q. Tang et al., The effects of neodymium addition on the intermetallic microstructure and mechanical properties of Al–7Si–0.3 Mg–0.3 Fe alloys. J. Alloys Compd. 741, 161–173 (2018)

    CAS  Google Scholar 

  30. R. Ahmad, M. Asmael, M. Amzar, Effect of ytterbium addition on microstructure and hardness of Al–6.5Si–1Zn secondary cast alloy. J. Eng. Appl. Sci. 11(16), 10123–10127 (2006)

    Google Scholar 

  31. D. Xiao et al., Effect of rare earth Yb addition on mechanical properties of Al–5· 3Cu–0· 8Mg–0· 6Ag alloy. Mater. Sci. Technol. 23(10), 1156–1160 (2007)

    Google Scholar 

  32. X.M. Zhang et al., Effects of Yb addition on microstructures and mechanical properties of 2519A aluminum alloy plate. Trans. Nonferrous Met. Soc. China 20(5), 727–731 (2010)

    Google Scholar 

  33. B. Li et al., Microstructure evolution and modification mechanism of the ytterbium modified Al–7.5%Si–0.45%Mg alloys. J. Alloys Compd. 509(7), 3387–3392 (2011)

    CAS  Google Scholar 

  34. J.H. Li et al., Refinement of eutectic Si phase in Al–5Si alloys with Yb additions. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 44a(2), 669–681 (2013)

    Google Scholar 

  35. Z. Hu et al., Solidification behavior, microstructure and silicon twinning of Al–10Si alloys with Yb addition. J. Rare Earths 36, 662–668 (2018)

    CAS  Google Scholar 

  36. Q. Li et al., Mechanical properties and microstructural evolution of Yb-modified Al–20% Si alloy. J. Mater. Eng. Perform. 27, 3498–3507 (2018)

    CAS  Google Scholar 

  37. K. Nogita, S.D. McDonald, A.K. Dahle, Eutectic modification of Al–Si alloys with rare earth metals. Mater. Trans. 45(2), 323–326 (2004)

    CAS  Google Scholar 

  38. Z.W. Chen, P. Chen, C.Y. Ma, Microstructures and mechanical properties of Al–Cu–Mn alloy with La and Sm addition. Rare Met. 31(4), 332–335 (2012)

    CAS  Google Scholar 

  39. H. Qiu, H. Yan, Z. Hu, Effect of samarium (Sm) addition on the microstructures and mechanical properties of Al–7Si–0.7 Mg alloys. J. Alloys Compd. 567, 77–81 (2013)

    CAS  Google Scholar 

  40. R. Yuansheng, Y. Hong, H. Zhi, Modification of eutectic silicon and β-Al 5 FeSi phases in as-cast ADC12 alloys by using samarium addition. J. Rare Earths 31(9), 916–922 (2013)

    Google Scholar 

  41. H. Zhi, Y. Hong, Y. Rao, Effects of samarium addition on microstructure and mechanical properties of as-cast Al-Si-Cu alloy. Trans. Nonferrous Met. Soc. China 23(11), 3228–3234 (2013)

    Google Scholar 

  42. H.X. Qiu, H. Yan, Z. Hu, Modification of near-eutectic Al–Si alloys with rare earth element samarium. J. Mater. Res. 29(11), 1270–1277 (2014)

    CAS  Google Scholar 

  43. Q. Li et al., Effect of samarium (Sm) addition on the microstructure and tensile properties of Al–20% Si casting alloy. Int. J. Metalcast. 12, 554–564 (2017)

    Google Scholar 

  44. V.V. Zakharov, T.D. Rostova, Effect of scandium, transition metals, and admixtures on strengthening of aluminum alloys due to decomposition of the solid solution. Met. Sci. Heat Treat. 49(9–10), 435–442 (2007)

    CAS  Google Scholar 

  45. M.S. Kaiser et al., Effect of scandium on the microstructure and ageing behaviour of cast Al–6Mg alloy. Mater. Charact. 59(11), 1661–1666 (2008)

    CAS  Google Scholar 

  46. W. Prukkanon, N. Srisukhumbowornchai, C. Limmaneevichitr, Influence of Sc modification on the fluidity of an A356 aluminum alloy. J. Alloys Compd. 487(1–2), 453–457 (2009)

    CAS  Google Scholar 

  47. D. Emadi, A.K.P. Rao, M. Mahfoud, Influence of scandium on the microstructure and mechanical properties of A319 alloy. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 527(23), 6123–6132 (2010)

    Google Scholar 

  48. W. Zhang et al., Effects of Sc content on the microstructure of As-Cast Al-7wt.% Si alloys. Mater. Charact. 66, 104–110 (2012)

    CAS  Google Scholar 

  49. U. Patakham, J. Kajornchaiyakul, C. Limmaneevichitr, Modification mechanism of eutectic silicon in Al–6Si–0.3 Mg alloy with scandium. J. Alloys Compd. 575, 273–284 (2013)

    CAS  Google Scholar 

  50. M. Yi, Z.-H. Zhao, J.-Z. Cui, Effect of minor Zr and Sc on microstructures and mechanical properties of Al–Mg–Si–Cu–Cr–V alloys. Trans. Nonferrous Met. Soc. China 23(7), 1882–1889 (2013)

    Google Scholar 

  51. J. Ma et al., Effect of Sc addition on microstructure and mechanical properties of 1460 alloy. Prog. Nat. Sci. Mater. Int. 24(1), 13–18 (2014)

    CAS  Google Scholar 

  52. Y.-C. Tzeng et al., Effects of scandium addition on iron-bearing phases and tensile properties of Al–7Si–0.6 Mg alloys. Mater. Sci. Eng. A 593, 103–110 (2014)

    CAS  Google Scholar 

  53. C. Xu et al., The synergic effects of Sc and Zr on the microstructure and mechanical properties of Al–Si–Mg alloy. Mater. Des. 88, 485–492 (2015)

    CAS  Google Scholar 

  54. J.H. Li et al., Modification of eutectic Si in Al–Si alloys with Eu addition. Acta Mater. 84, 153–163 (2015)

    CAS  Google Scholar 

  55. F. Mao et al., The interaction between Eu and P in high purity Al–7Si alloys. Mater. Charact. 120, 129–142 (2016)

    CAS  Google Scholar 

  56. F. Mao et al., Effect of Eu addition on the microstructures and mechanical properties of A356 aluminum alloys. J. Alloys Compds. 650, 896–906 (2015)

    CAS  Google Scholar 

  57. W.Y. Liu et al., Synergistic effects of Gd and Zr on grain refinement and eutectic Si modification of Al–Si cast alloy. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 693, 93–100 (2017)

    CAS  Google Scholar 

  58. O. El Sebaie, The Effect of Mischmetal, Cooling Rate and Heat Treatment on the Microstructure and Hardness of 319, 356, and 413 Aluminum-Silicon Alloys (UQAC, 2006)

    Google Scholar 

  59. O. El Sebaie et al., The effects of mischmetal, cooling rate and heat treatment on the hardness of A319.1, A356.2 and A413.1 Al–Si casting alloys. Mater. Sci. Eng. A. 486(1), 241–252 (2008)

    Google Scholar 

  60. O. El Sebaie et al., The effects of mischmetal, cooling rate and heat treatment on the eutectic Si particle characteristics of A319.1, A356.2 and A413.1 Al–Si casting alloys. Mater. Sci. Eng. A 480(1–2), 342–355 (2008)

    Google Scholar 

  61. O. Elsebaie, F.H. Samuel, S. Al Kahtani, Intermetallic phases observed in non-modified and Sr-modified Al–Si cast alloys containing mischmetal. Int. J. Cast Met. Res. 26(1), 1–15 (2013)

    CAS  Google Scholar 

  62. G.S. Mousavi, M. Emamy, J. Rassizadehghani, The effect of mischmetal and heat treatment on the microstructure and tensile properties of A357 Al–Si casting alloy. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 556, 573–581 (2012)

    CAS  Google Scholar 

  63. Z.Y. Ouyang, X.M. Mao, M. Hong, Multiplex modification with rare earth elements and P for hypereutectic Al–Si alloys. J. Shanghai Univ. (Engl. Ed.) 11, 400–402 (2007)

    CAS  Google Scholar 

  64. Y.C. Tsai et al., Effect of trace La addition on the microstructures and mechanical properties of A356 (Al–7Si–0.35 Mg) aluminum alloys. J. Alloys Compd. 487(1), 157–162 (2009)

    CAS  Google Scholar 

  65. S.A. Alkahtani et al., Effect of rare earth metals on the microstructure of Al–Si based alloys. Materials (Basel) 9(1), 45 (2016)

    Google Scholar 

  66. E. Elgallad et al., Microstructural characterisation of Al–Si cast alloys containing rare earth additions. Philos. Mag. 98, 1337–1359 (2018)

    CAS  Google Scholar 

  67. E.M. Elgallad et al., Effects of La and Ce Addition on the Modification of Al-Si Based Alloys. Adv. Mater. Sci. Eng. (2016). https://doi.org/10.1155/2016/5027243

    Article  Google Scholar 

  68. M.G. Mahmoud et al., Effect of solidification rate and rare earth metal addition on the microstructural characteristics and porosity formation in A356 alloy. Adv. Mater. Sci. Eng. (2017). https://doi.org/10.1155/2017/5086418

    Article  Google Scholar 

  69. M.G. Mahmoud et al., Effect of rare earth metals, Sr, and Ti addition on the microstructural characterization of A4131 alloy. Adv. Mater. Sci. Eng. (2017). https://doi.org/10.1155/2017/4712946

    Article  Google Scholar 

  70. A.M. Nabawy et al., Role of cerium, lanthanum, and strontium additions in an Al–Si–Mg (A356) alloy. Int. J. Mater. Res. 107(5), 446–458 (2016)

    CAS  Google Scholar 

  71. A.M. Samuel et al., Intermetallic precipitation in rare earth-treated A413.1 alloy: a metallographic study. Int. J. Mater. Res. 109(2), 157–171 (2018)

    CAS  Google Scholar 

  72. Global Supplier of Fabricated Products & Machining Parts | Stanford Advanced Materials. 2018. http://www.samaterials.com/.

  73. L. Backerud, G. Chai, J. Tamminen, Solidification Characteristics of Aluminum Alloys, Foundry Alloys, vol. 2 (American Foundrymens Society Inc, 1990), p. 266

    Google Scholar 

  74. H.K. Yi, D. Zhang, Modification effect of pure rare earth metal La on as—cast hypereutectic Al—17% Si alloys. China Nonferrous Met. Soc. J. 13(2), 358–364 (2003)

    CAS  Google Scholar 

  75. M. Ibrahim, M. Abdelaziz, A.M. Samuel, H. Doty, F.H. Samuel, Spheroidization and coarsening of eutectic Si particles in Al–Si-based alloys. Adv. Mater. Sci. Eng. (2021). https://doi.org/10.1155/2021/6678280

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. H. Samuel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, M.G., Zedan, Y., Samuel, A.M. et al. The Use of Rare Earth Metals in Al–Si–Cu Casting Alloys. Inter Metalcast 16, 535–552 (2022). https://doi.org/10.1007/s40962-021-00640-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-021-00640-5

Keywords

Navigation