• Open Access

Student reasoning in hydrodynamics: Bernoulli’s principle versus the continuity equation

Claudia Schäfle and Christian Kautz
Phys. Rev. Phys. Educ. Res. 17, 010147 – Published 29 June 2021

Abstract

We report on an investigation of student thinking about steady-state pipe flow of an incompressible fluid. About 250 undergraduate engineering students were given a test consisting of two hydrodynamics questions, combining multiple-choice format with subsequent open-ended explanations. There is substantial evidence that students have difficulty applying and prioritizing the two basic principles of mass conservation (expressed in the continuity equation) and energy conservation (i.e., Bernoulli’s equation). When faced with questions that involve gravity, dissipative effects (“friction”), or a visible pressure drop, a considerable number of students did not invoke the continuity equation in situations where applying it is a necessary step for arriving at the correct answer. Instead, even after lecture instruction on this topic, many of the first-year students based their answers on ill-supported assumptions about local pressures. Some of them used formal arguments from a simplified Bernoulli equation (“lower pressure means higher velocity”), while others based their answer on intuitive arguments (“higher pressure leads to higher velocity”). We also found reasoning based on analogies to single-particle motion (“flow velocity decreases when flowing upwards or friction is present”). Contrary to other researchers, we did not see any evidence for the hypothesis that students think of water as a compressible fluid. Instead, students’ answers often indicate a lack of understanding of the conservation of mass or its implications for incompressible fluids or of the role that this principle plays in the context of fluid flow. In addition, our data indicate that some students have more general difficulties in describing and reasoning about technical situations, such as applying equations containing multiple variables, distinguishing spatial differences in a quantity from its changes with respect to time, or realizing the meaning of idealizations. We also present some evidence that different levels of activation of students during instruction influence the prevalence of these difficulties and discuss some implications for instruction.

  • Figure
  • Figure
  • Received 8 May 2020
  • Revised 5 April 2021
  • Accepted 4 May 2021

DOI:https://doi.org/10.1103/PhysRevPhysEducRes.17.010147

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Physics Education Research

Authors & Affiliations

Claudia Schäfle*

  • Faculty of Applied Natural Sciences and Humanities, Rosenheim Technical University of Applied Sciences, 83024 Rosenheim, Germany

Christian Kautz

  • Engineering Education Research Group, Hamburg University of Technology, 21073 Hamburg, Germany

  • *claudia.schaefle@th-rosenheim.de

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 17, Iss. 1 — January - June 2021

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Physics Education Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×