Skip to main content
Log in

A numerical method to investigate the effect of thermal and plastic behaviors on the evolution of sliding wear

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Thermo-mechanical wear widely exists in various mechanical components. This paper improves the elastic finite element wear method to solve sliding wear problems with friction heat and elastoplastic behaviors. Especially, the thermo-mechanical wear method is illustrated in details, and the wear problems with full coupled thermal and plastic behaviors are numerically simulated for the first time based on the integration of power hardening law with Archard wear model. The local contact parameters are applied to solve the change of surface geometry and wear profiles based on the proposed wear model. After validation in ball-on-flat experiments, the comparing analysis indicate that friction heat and plasticity have great influence on wear evolution, the proposed method is more accurate than the elastic simulation method. The wear profiles, contact pressure, and temperature can be predicted effectively to help the designer further understand the wear process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

e :

Euler’s number (.)

α :

Expansion (e5/°C)

β :

Heat distribution coefficient (.)

\(h_{w}\) :

Nodal wear depth in duration (μm)

Δh i :

Wear depth increment in wear cycles ΔNi (μm)

ΔN i :

Number of jump wear cycles

i :

Ith wear increments (.)

Δt :

Duration of single wear cycle (s)

δt :

Duration of transient heat flux (s)

\(\dot{\varepsilon }^{pl}\) :

Plastic flow rate (.)

μ :

Friction coefficient (.)

υ :

Poisson’s ratio (.)

\(\rho\) :

Density (kg/m3)

\(\overline{{\varepsilon_{0} }}^{pl}\) :

Initial equivalent plastic strain (.)

\(\overline{\varepsilon }^{pl}\) :

Equivalent plastic strain (.)

\(\sigma_{vM}\) :

Equivalent Mises stress (MPa)

\(\sigma_{Y}\) :

Flow yield strength (MPa)

q :

Transient heat flux density (J/(s mm2))

\(\overline{q}\) :

Time-averaged heat flux (J/(s mm2))

\(N_{c}\) :

Total number of wear cycles (.)

\(p_{0}\) :

Pressure at zero overclosure (MPa)

p :

Local nodal pressure (MPa)

S :

Deviatoric stress (MPa)

j :

Node number (.)

x, y, z :

Cartesian coordinates

\(\mathop{C}\limits^{\rightharpoonup}\) (x, y, z):

Coordinates of node

\(\mathop{n}\limits^{\rightharpoonup}\) :

Inner normal vector of node

A :

Initial yield strength (MPa)

B :

Hardening parameter of strain

c :

Heat capacity (kg °C)

\(c_{0}\) :

Initial contact distance (μm)

dv/dt :

Wear volume rate (mm3/s)

E :

Elastic modulus (GPa)

f :

Oscillating frequency (Hz)

F n :

Normal force (N)

H :

Vickers hardness (MPa)

γ :

Heat convective coefficient (.)

k :

Heat conductivity (J/(ms °C))

k w :

Dimensionless wear coefficient

v :

Sliding velocity (mm/s)

L :

Stroke length of wear test (.)

m :

Thermal softening exponent (.)

n :

Strain hardening index (.)

T :

Transient temperature (°C)

T 0 :

Room temperature (°C)

T m :

Melting temperature (°C)

t test :

Test duration (s)

v :

Sliding velocity (mm/s)

Ra :

Surface roughness (μm)

References

  1. Rigney DA (2000) Transfer, mixing and associated chemical and mechanical processes during the sliding of ductile materials. Wear 245(1–2):1–9. https://doi.org/10.1016/S0043-1648(00)00460-9

    Article  Google Scholar 

  2. Rigney DA et al (1984) Wear processes in sliding systems. Wear 100(1–3):195–219. https://doi.org/10.1016/0043-1648(84)90013-9

    Article  Google Scholar 

  3. Kapoor A, Franklin FJ (2000) Tribological layers and the wear of ductile materials. Wear 245(1–2):204–215. https://doi.org/10.1016/S0043-1648(00)00480-4

    Article  Google Scholar 

  4. Lou M, Alpas AT (2019) High temperature wear mechanisms in thermally oxidized titanium alloys for engine valve applications. Wear 426:443–453. https://doi.org/10.1016/j.wear.2018.12.041

    Article  Google Scholar 

  5. Ling FF, Saibel E (1957) Thermal aspects of galling of dry metallic surfaces in sliding contact. Wear 1(2):80–91. https://doi.org/10.1016/0043-1648(57)90002-9

    Article  Google Scholar 

  6. Kennedy FE, Lu Y, Baker I (2015) Contact temperatures and their influence on wear during pin-on-disk tribotesting. Tribol Int 82:534–542. https://doi.org/10.1016/j.triboint.2013.10.022

    Article  Google Scholar 

  7. Abbasi S et al (2014) Temperature and thermoelastic instability at tread braking using cast iron friction material. Wear 314(1–2):171–180. https://doi.org/10.1016/j.wear.2013.11.028

    Article  Google Scholar 

  8. Tarasov SYu et al (2017) Adhesion transfer in sliding a steel ball against an aluminum alloy. Tribol Int 115:191–198. https://doi.org/10.1016/j.triboint.2017.05.039

    Article  Google Scholar 

  9. Wen E, Song R, Xiong W (2019) Effect of tempering temperature on microstructures and wear behavior of a 500 hb grade wear-resistant steel. Metals 9(1):45. https://doi.org/10.3390/met9010045

    Article  Google Scholar 

  10. Lijesh KP, Khonsari MM, Kailas SV (2018) On the integrated degradation coefficient for adhesive wear: a thermodynamic approach. Wear 408:138–150. https://doi.org/10.1016/j.wear.2018.05.004

    Article  Google Scholar 

  11. Bryant MD, Khonsari MM, Ling FF (2008) On the thermodynamics of degradation. Proc R Soc A Math Phys Eng Sci 464(2096):2001–2014. https://doi.org/10.1098/rspa.2007.0371

    Article  MATH  Google Scholar 

  12. Binder M, Klocke F, Döbbeler B (2017) An advanced numerical approach on tool wear simulation for tool and process design in metal cutting. Simul Model Pract Theory 70:65–82. https://doi.org/10.1016/j.simpat.2016.09.001

    Article  Google Scholar 

  13. Maurel-Pantel A et al (2012) 3D FEM simulations of shoulder milling operations on a 304L stainless steel. Simul Model Pract Theory 22:13–27. https://doi.org/10.1016/j.simpat.2011.10.009

    Article  Google Scholar 

  14. Podra P, Andersson S (1999) Simulating sliding wear with finite element method. Tribol Int 32(2):71–81. https://doi.org/10.1016/S0301-679X(99)00012-2

    Article  Google Scholar 

  15. Hegadekatte V, Huber N, Kraft O (2004) Finite element based simulation of dry sliding wear. Model Simul Mater Sci Eng 13(1):57. https://doi.org/10.1088/0965-0393/13/1/005

    Article  Google Scholar 

  16. Cavalieri FJ, Cardona A (2013) Three-dimensional numerical solution for wear prediction using a mortar contact algorithm. Int J Numer Methods Eng 96:467–486. https://doi.org/10.1002/nme.4556

    Article  MathSciNet  MATH  Google Scholar 

  17. Schmidt AA et al (2018) Transient wear simulation based on three-dimensional finite element analysis for a dry running tilted shaft-bushing bearing. Wear 408:171–179. https://doi.org/10.1016/j.wear.2018.05.008

    Article  Google Scholar 

  18. Yue T, Wahab MA (2017) Finite element analysis of fretting wear under variable coefficient of friction and different contact regimes. Tribol Int 107:274–282. https://doi.org/10.1016/j.triboint.2016.11.044

    Article  Google Scholar 

  19. Arnaud P, Fouvry S, Garcin S (2017) A numerical simulation of fretting wear profile taking account of the evolution of third body layer. Wear 376:1475–1488. https://doi.org/10.1016/j.wear.2017.01.063

    Article  Google Scholar 

  20. Dhia HB, Torkhani M (2010) Modeling and computation of fretting wear of structures under sharp contact. Int J Numer Methods Eng 85:61–83. https://doi.org/10.1002/nme.2958

    Article  MATH  Google Scholar 

  21. Gui L et al (2016) A simulation method of thermo-mechanical and tribological coupled analysis in dry sliding systems. Tribol Int 103:121–131. https://doi.org/10.1016/j.triboint.2016.06.021

    Article  Google Scholar 

  22. Yevtushenko AA, Grzes P (2014) Mutual influence of the velocity and temperature in the axisymmetric FE model of a disc brake. Int Commun Heat Mass Transf 57:341–346. https://doi.org/10.1016/j.icheatmasstransfer.2014.08.022

    Article  Google Scholar 

  23. ABAQUS UNIFIED FEA. Dassault Systèmes Simulia Corporation. Paris, FR. Archived from the original on 29 May 2010. https://www.3ds.com/products-services/simulia/products/abaqus

  24. Bhushan B (2013) Introduction to tribology. Wiley, London. https://doi.org/10.1002/9781118403259

    Book  Google Scholar 

  25. Chen WW, Wang QJ (2008) Thermo-mechanical coupling analysis of elastoplastic bodies in a sliding spherical contact and the effects of sliding speed, heat partition, and thermal softening. J Tribol. https://doi.org/10.1115/1.2959110

    Article  Google Scholar 

  26. Manual, Abaqus User. Abaqus theory guide. Version, 2017

  27. Ishlinsky A (1944) The problem of plasticity with axial symmetry and Brinell’s test. J Appl Math Mech 8:201–224

    MathSciNet  Google Scholar 

  28. Ibrahimbegovic A (2009) Nonlinear solid mechanics: theoretical formulations and finite element solution methods. Springer, Berlin

    Book  Google Scholar 

  29. Krysl P (2016) Finite Element Modeling with Abaqus and Matlab for Thermal and Stress Analysis

  30. Archard JF (1953) Contact and rubbing of flat surfaces. J Appl Phys 24(8):981–988. https://doi.org/10.1063/1.1721448

    Article  Google Scholar 

  31. Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th international symposium on ballistics, pp 541–547

  32. Abbott EJ, Firestone FA (1995) Specifying surface quality: a method based on accurate measurement and comparison. Spie Milestone Ser MS 107:63–63

    Google Scholar 

  33. Ye N, Komvopoulos K (2003) Indentation analysis of elastic-plastic homogeneous and layered media: criteria for determining the real material hardness. J Tribol 125(4):685–691. https://doi.org/10.1115/1.1572515

    Article  Google Scholar 

  34. Kogut L, Komvopoulos K (2004) Analysis of the spherical indentation cycle for elastic–perfectly plastic solids. J Mater Res 19(12):3641–3653. https://doi.org/10.1557/JMR.2004.0468

    Article  Google Scholar 

  35. Popescu G et al (2006) An engineering model for three-dimensional elastic–plastic rolling contact analyses. Tribol Trans 49(3):387–399. https://doi.org/10.1080/05698190600678739

    Article  Google Scholar 

  36. Ren N et al (2010) Plasto-elastohydrodynamic lubrication (PEHL) in point contacts. J Tribol. https://doi.org/10.1115/1.4001813

    Article  Google Scholar 

  37. He T et al (2015) Simulation of plasto-elastohydrodynamic lubrication in line contacts of infinite and finite length. J Tribol. https://doi.org/10.1115/1.4030690

    Article  Google Scholar 

  38. Azam A et al (2019) A simple deterministic plastoelastohydrodynamic lubrication (PEHL) model in mixed lubrication. Tribol Int 131:520–529. https://doi.org/10.1016/j.triboint.2018.11.011

    Article  Google Scholar 

  39. Van Rossum G (1995) Python tutorial. Technical Report CS-R9526, Centrum voor Wiskunde en Informatica (CWI), Amsterdam

  40. Python Software Foundation. Python Language Reference, version 2.7. Available at http://www.python.org

  41. Mccoll IR, Ding J, Leen SB (2004) Finite element simulation and experimental validation of fretting wear. Wear 256(11–12):1114–1127. https://doi.org/10.1016/j.wear.2003.07.001

    Article  Google Scholar 

  42. Gan L et al (2019) A numerical method to investigate the temperature behavior of spiral bevel gears under mixed lubrication condition. Appl Therm Eng 147:866–875. https://doi.org/10.1016/j.applthermaleng.2018.10.125

    Article  Google Scholar 

  43. Holman J (2010) Heat transfer across a two-fluid-layer region. Heat Transf. https://doi.org/10.1115/1.3246887

    Article  Google Scholar 

  44. Laakso SVA (2017) Heat matters when matter heats—the effect of temperature-dependent material properties on metal cutting simulations. J Manuf Process 27:261–275. https://doi.org/10.1016/j.jmapro.2017.03.016

    Article  Google Scholar 

  45. ASTM, 52100 Bearing Steel, Retrieved September 20, 2019 from ASTM steel Web site, http://www.astmsteel.com/product/52100-bearing-steel-aisi

  46. Hashemzadeh M, Chen BQ, Guedes SC (2015) Numerical and experimental study on butt weld with dissimilar thickness of thin stainless steel plate. Int J Adv Manuf Technol 78(1–4):319–330. https://doi.org/10.1007/s00170014-65976

    Article  Google Scholar 

  47. ASTM International (2016) G133-05 Linearly reciprocating ball-on-flat sliding wear. ASTM International. https://doi.org/10.1520/G0133-05R16.2

  48. Meng FM et al (2018) Experimental study on tribological properties of graphite-MoS2 coating on GCr15. J Tribol. https://doi.org/10.1115/1.4039796

    Article  Google Scholar 

  49. Origin Pro, Version 2018. OriginLab Corporation, Northampton, MA, USA

  50. Kucharski S, Mroz ZZ (2011) Identification of wear process parameters in reciprocating ball-on-disc tests. Tribol Int 44(2):154–164. https://doi.org/10.1016/j.triboint.2010.10.010

    Article  Google Scholar 

  51. William FS, Hashemi J, Presuel-Moreno F (2006) Foundations of materials science and engineering. Mcgraw-Hill, London

    Google Scholar 

  52. Wang Y, Lei T, Liu J (1999) Tribo-metallographic behavior of high carbon steels in dry sliding: II. Microstructure and wear. Wear 231(1):12–19. https://doi.org/10.1016/S0043-1648(99)00116-7

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by National Key Research and Development Project of China (2018YFB1304800), and the Basic science and frontier technology research of Chongqing (cstc2018jcyjAX0451).

Author information

Authors and Affiliations

Authors

Contributions

Lai Gan: Conceptualization, Methodology, Software, Formal analysis, Writing-Original Draft. Ke Xiao and Ting Tang: Resources, Data curation, Project administration. Wei Pu: Writing-Review. Jiaxu Wang: Funding acquisition.

Corresponding author

Correspondence to Ke Xiao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In the thermo-mechanical analysis, the stain of material is subject to the stress state. In general, the stress state at a material point can be determined by 9 stress components which in matrix notation is given as:

$$\left[ {\begin{array}{*{20}c} {\sigma_{xx} } & {\tau_{xy} } & {\tau_{xz} } \\ {\tau_{yx} } & {\sigma_{yy} } & {\tau_{yz} } \\ {\tau_{zx} } & {\tau_{zy} } & {\sigma_{zz} } \\ \end{array} } \right]$$
(22)

In the equation above, the diagonal members of this matrix σxx are normal stresses in the x direction. The symbol σxx denotes a normal stress associated with a plane whose normal is in the x direction. Shear stresses are given by τ. The symbol τxy denotes that the shear stresses applied on the yoz plane whose normal is the x direction (first subscript), the second subscript indicates that the direction of the applied force is in the y direction. For convenient, we consider the total stress as the sum of the average stress σm and the stress deviations:

$$\left[ {\begin{array}{*{20}c} {\sigma_{xx} } & {\tau_{xy} } & {\tau_{xz} } \\ {\tau_{yx} } & {\sigma_{yy} } & {\tau_{yz} } \\ {\tau_{zx} } & {\tau_{zy} } & {\sigma_{zz} } \\ \end{array} } \right]{ = }\left[ {\begin{array}{*{20}c} {\sigma_{m} } & 0 & 0 \\ 0 & {\sigma_{m} } & 0 \\ 0 & 0 & {\sigma_{m} } \\ \end{array} } \right] + \left[ {\begin{array}{*{20}c} {\sigma_{xx} - \sigma_{m} } & {\tau_{xy} } & {\tau_{xz} } \\ {\tau_{yx} } & {\sigma_{yy} - \sigma_{m} } & {\tau_{yz} } \\ {\tau_{zx} } & {\tau_{zy} } & {\sigma_{zz} - \sigma_{m} } \\ \end{array} } \right]$$
(23)

where the average stress σm is defined as:

$$\sigma_{m} = \frac{1}{3}\left( {\sigma_{xx} + \sigma_{yy} + \sigma_{zz} } \right)$$
(24)

In the Eq. (23), the first term on the right is the spherical stress tensor, the second term presents the deviatoric stress tensor, S donates the second-order deviator stress which is defined as:

$${\varvec{S}} = \left[ {\begin{array}{*{20}c} {s_{11} } & {s_{12} } & {s_{13} } \\ {s_{21} } & {s_{22} } & {s_{23} } \\ {s_{31} } & {s_{32} } & {s_{33} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {\sigma_{xx} - \sigma_{m} } & {\tau_{xy} } & {\tau_{xz} } \\ {\tau_{yx} } & {\sigma_{yy} - \sigma_{m} } & {\tau_{yz} } \\ {\tau_{zx} } & {\tau_{zy} } & {\sigma_{zz} - \sigma_{m} } \\ \end{array} } \right]$$
(25)

Substituting Eqs. (24, 25) into the Eq. (23), the deviatoric stress Sij can be obtained as follows:

$$S_{ij} = \sigma_{ij} - \sigma_{m} \delta_{ij} /3$$

Here, δij is the Kronecker delta:

$$\delta_{ij} = \left\{ \begin{gathered} 1{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\text{if}}{\kern 1pt} {\kern 1pt} j = i \hfill \\ 0{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\text{otherwise}} \hfill \\ \end{gathered} \right.$$

After determination of the stress state of surface material by numerical analysis, the von Mises yield criterion given by deviatoric stress tensor is utilized to solve the plastic stain. Here, the plastic yield rule can be expressed as:

$$F = \sigma_{vM} - \sigma_{Y} \left( {\overline{\varepsilon }^{pl} ,T} \right) = \sqrt {\frac{3}{2}{\varvec{S}}:{\varvec{S}}} - \sigma_{Y} \left( {\overline{\varepsilon }^{pl} ,T} \right)$$
(26)

Here, \({\sigma }_{vM}\) is the equivalent von Mises stress, σY presents the flow yield strength of material. The symbol: is the product of second-order tensors.

In the thermo-mechanical contact problem, the strain hardening behavior with temperature has great influence on the material yield strength, σY, and the isotropic Johnson and Cook power hardening law is applied to describe influences of plastic stain and temperature on the yield strength:

$$\sigma_{Y} \left( {\overline{\varepsilon }^{pl} ,T} \right){ = }\left[ {A + B\left( {\overline{\varepsilon }^{pl} } \right)^{n} } \right]\left[ {1 - \left( {\frac{{T - T_{0} }}{{T_{m} - T_{0} }}} \right)^{m} } \right]$$
(27)

where \({\overline{\varepsilon }}^{pl}\) donates the equivalent plastic strain. \({T}_{0}\) is the room temperature, and \({T}_{m}\) is usually the melting temperature of material. \(T\) presents the local contact temperature.

For isotropic Mises plasticity, the equivalent plastic strain \(\overline{\varepsilon }^{pl}\) is the function of equivalent plastic strain rate tensor \({\dot{{{\varepsilon}}}}^{pl}\) [25]:

$$\overline{\varepsilon }^{pl} = \int_{0}^{\Delta t} {\sqrt {\frac{2}{3}\varvec{\dot{\user2{\varepsilon }}}^{pl} :\varvec{\dot{\user2{\varepsilon }} }^{pl}}} dt$$
(28)

The kinematic hardening models assume associated plastic flow rate, \(\dot{\user2{\varepsilon }}^{pl}\) can be written as:

$$\dot{\user2{\varepsilon }}^{pl} { = }\dot{\overline{\varepsilon }}^{pl} \frac{{3{\varvec{S}}}}{{2\sigma_{vM} }}$$
(29)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, L., Xiao, K., Pu, W. et al. A numerical method to investigate the effect of thermal and plastic behaviors on the evolution of sliding wear. Meccanica 56, 2339–2356 (2021). https://doi.org/10.1007/s11012-021-01362-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-021-01362-y

Keywords

Navigation