Skip to main content

Advertisement

Log in

A Versatile Ultra-Wideband Radio Sensor for Early Stage Detection of Breast Cancer

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

Sensor design using ultra-wideband (UWB) technology is considered powerful emerging technique to extract information about the state of biological and physiological conditions of human organs for diagnostic purposes. Recently, UWB radio sensor technology is being proposed for early stage breast cancer detection in view of some superior characteristics or bio-markers over current methods. In this paper, a RDRA is designed, leading to develop the smart data acquisition system. A novel RDRA structure is simulated, which operates in the range of 3.7–7.4 GHz (67% bandwidth) which lies in the lower European UWB frequency band. The positive gain of the proposed antenna is stable across the active bandwidth and the peak value is 2.5 dB, which makes the RDRA structure highly suitable for body centric applications, especially for early detection of breast cancer. Thus, the proposed RDRA antenna structure can be integrated for early stage breast cancer detection application as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. World Health Organization. (2020). WHO report on cancer: setting priorities, investing wisely and providing care for all. World Health Organization. https://apps.who.int/iris/handle/10665/330745

  2. A. C. Society, Cancer Facts & Figures, The Society, New York, NY, USA, 2016. https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2016.html

  3. K. B. C. Society, Breast Cancer Facts & Figures 2014,Korean Breast Cancer Society, Seoul, South Korea, 2014. https://pubmed.ncbi.nlm.nih.gov/28382089/

  4. A.L.Siu,“ Screening for breast cancer:U.S. Preventive ser- vices task force recommendation statement,” Annals of Internal Medicine,vol.164, pp.279–296,2016

  5. D. R. Hooley, “Mammographic Images Showing How Cancer Looks in Each of the Breast Density Categories,” Dense Breast info, http://densebreast-info.org/faqs-for-health-professionals .aspx.

  6. P. M. Meaney, M. W. Fanning, T. Zhou, A. Golnabi, S. D. Geimer, and K. D. Paulsen, “Clinical microwave breast imaging—2D results and the evolution to 3D,” In: Proceedings of the 2009 International Conference on Electromagnetics in Advanced Applications (ICEAA’09), pp. 881–884, Torino, Italy, September 2009. https://doi.org/10.1109/ICEAA.2009.5297356.

  7. P. M. Meaney, M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen, “A clinical prototype for active microwave imaging of the breast,” IEEE Trans. Microw. Theory Tech., vol. 48, pp. 1841–1853, 2000. https://doi.org/10.1109/22.883861

  8. M. Grzegorczyk, P. M. Meaney, P. A. Kaufman, R. M. Diflorio-Alexander, and K. D. Paulsen, “Fast 3-D tomographic microwave imaging for breast cancer detection,” IEEE Transactions on Medical Imaging,vol.31,pp. 1584–1592, 2012. https://doi.org/10.1109/Tmi.2012.2197218

  9. K.-J. Lee, J.-Y. Kim, S.-H. Son, J. Lee, and S. Jeon, “Sensing probe for 3–6 GHz microwave imaging systems,” Electronics Letters, vol.50, pp. 1049-1050,2014. https://doi.org/10.1049/el.2014.1923

  10. E. Porter, E. Kirshin, A. Santorelli, M. Coates, and M. Popovı,“Time-domain multistatic radar system for microwave breast screening,” IEEEAntennas andWireless Propagation Letters,vol. 12, pp. 229–232, 2013. https://doi.org/10.1109/LAWP.2013.2247374

  11. E.C.Fear, P.M.Meaney, andM.A.Stuchly,“Microwaves for breast cancer detection?” IEEE Potentials,vol.22,pp. 12– 18, 2003. doi: https://doi.org/10.1109/Mp.2003.1180933

  12. M. Klemm, J. A. Leendertz, D. Gibbins, I. J. Craddock, A. Preece, andR. Benjamin, “Microwave radar-based breast cancer detection: imaging in inhomogeneous breast phantoms,” IEEE Antennas andWireless Propagation Letters,vol.8,pp. 1349–1352, 2009.https://doi.org/10.1109/LAWP.2009.2036748

  13. J. Bourqui, J. Garrett, and E. Fear, “Measurement and analysis of microwave frequency signals transmitted through the breast,” International Journal of Biomedical Imaging,vol.2012, Article ID 562563, 11 pages, 2012. https://doi.org/10.1155/2012/562563

  14. R. C. Conceicao, H. Medeiros, M. O’Halloran, D. Rodriguez- Herrera, D. Flores-Tapia, and S. Pistorius, “Initial classification of breast tumour phantoms using a UWB radar prototype,” in Proceedings ofthe 15th International Conference on Electromag- netics in Advanced Applications (ICEAA ’13), pp. 720–723, IEEE, 2013. https://doi.org/10.1109/ICEAA.2013.6632339

  15. P. M. Meaney, S. A. Pendergrass, M. W. Fanning, and K. D. Paulsen, “Importance of using a reduced contrast coupling medium in 2D microwave breast imaging,” Journal of Electro- magnetic Waves and Applications,vol.17,pp.333–355, 2003. https://doi.org/10.1163/156939303322235851

  16. S. S. Chaudhary, R. K. Mishra, A. Swarup, and J. M. Thomas,“Dielectric properties of normal & malignant human breast tissues at radiowave & microwave frequencies,” Indian Journal of Biochemistry and Biophysics,vol.21,pp. 76–79, 1984. https://pubmed.ncbi.nlm.nih.gov/6490065/

  17. L. Wang, “Microwave sensors for breast cancer detection,” Sensors (Switzerland), vol. 18, no. 2, pp. 1–17, 2018, https://doi.org/10.3390/s18020655

  18. R. Cicchetti, E. Miozzi, and O. Testa, “Wideband and UWB antennas for wireless applications: A comprehensive review,” Int. J. Antennas Propag., vol. 2017, 2017, https://doi.org/10.1155/2017/2390808.

  19. T. Uno and S. Adachi, “Inverse scattering method for one-dimensional inhomogeneous layered media,” IEEE Trans. Antennas Propag., vol. 35, no. 12, pp. 1456–1466, 1987, https://doi.org/10.1109/TAP.1987.1144033

  20. R. K. Mongia, P. Bhartia, C. L. Larose, and S. R. Mishra, “Accurate Measurement of Q-Factors of Isolated Dielectric Resonators,” IEEE Trans. Microw. Theory Tech., vol. 42, no. 8, pp. 1463–1467, 1994, https://doi.org/10.1109/22.297807

  21. T. Jun Cui and C. Hong Liang, “Inverse Scattering Method for One-Dimensional Inhomogeneous Lossy Medium by Using a Microwave Networking Technique,” IEEE Trans. Microw. Theory Tech., vol. 43, no. 8, pp. 1773–1781, 1995, https://doi.org/10.1109/22.402259.

  22. O. P. Profiles, V. a Mikhnev, and P. Vainikainen, “Two-Step Inverse Scattering Method for,” vol. 48, no. 2, pp. 293–298, 2000. https://doi.org/10.1109/8.833079

  23. D. Franceschini, M. Donell, G. Franceschini, and A. Massa, “Iterative image reconstruction of two-dimensional scatterers illuminated by TE waves,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 4, pp. 1484–1494, 2006, https://doi.org/10.1109/TMTT.2006.871921

  24. J. M. Geffrin, P. Sabouroux, and C. Eyraud, “Free space experimental scattering database continuation: Experimental set-up and measurement precision,” Inverse Probl., vol. 21, no. 6, 2005, https://doi.org/10.1088/0266-5611/21/6/S09.

  25. W. Huang and A. A. Kishk, “Compact dielectric resonator antenna for microwave breast cancer detection,” IET Microwaves, Antennas Propag., vol. 3, no. 4, pp. 638–644, 2009, https://doi.org/10.1049/iet-map.2008.0170

  26. S. M. Salvador, E. C. Fear, M. Okoniewski, and J. R. Matyas, “Exploring joint tissues with microwave imaging,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 8, pp. 2307–2313, 2010, https://doi.org/10.1109/TMTT.2010.2052662

  27. T. Kikkawa and T. Sugitani, “Planar UWB antenna array for breast cancer detection,” 2013 7th Eur. Conf. Antennas Propagation, EuCAP 2013, vol. 2, pp. 339–343, 2013. https://ieeexplore.ieee.org/document/6546278

  28. S. Kwon and S. Lee, “Instantaneous microwave imaging with time-domain measurements for breast cancer detection,” Electron. Lett., vol. 49, no. 10, pp. 653–654, 2013, https://doi.org/10.1049/el.2013.0248

  29. E. Porter, E. Kirshin, A. Santorelli, M. Coates, and M. Popoví, “Time-domain multistatic radar system for microwave breast screening,” IEEE Antennas Wirel. Propag. Lett., vol. 12, pp. 229–232, 201https://doi.org/10.1109/LAWP.2013.2247374

  30. A. Sabouni and A. A. Kishk, “Dual-polarized, broadside, thin dielectric resonator antenna for microwave imaging,” IEEE Antennas Wirel. Propag. Lett., vol. 12, pp. 380–383, 2013, https://doi.org/10.1109/LAWP.2013.2252142

  31. B. J. Mohammed, A. M. Abbosh, S. Mustafa, and D. Ireland, “Microwave system for head imaging,” IEEE Trans. Instrum. Meas., vol. 63, no. 1, pp. 117–123, 2014, https://doi.org/10.1109/TIM.2013.2277562

  32. E. Porter, H. Bahrami, A. Santorelli, B. Gosselin, L. A. Rusch, and M. Popovic, “A Wearable Microwave Antenna Array for Time-Domain Breast Tumor Screening,” IEEE Trans. Med. Imaging, vol. 35, no. 6, pp. 1501–1509, 2016, https://doi.org/10.1109/TMI.2016.2518489

  33. Z. Xu, S. Zhu, R. Wang, and R. Xie, “An H-shape dielectric resonator antenna with U-slot on the patch,” 2016 Prog. Electromagn. Res. Symp. PIERS 2016 - Proc., pp. 4447–4450, 2016, https://doi.org/10.1109/PIERS.2016.7735647.

  34. V. Selvaraj, D. Baskaran, P. H. Rao, P. Srinivasan, and R. Krishnan, “Breast Tissue Tumor Analysis Using Wideband Antenna and Microwave Scattering,” IETE J. Res., vol. 0, no. 0, pp. 1–11, 2018, https://doi.org/10.1080/03772063.2018.1531067

  35. W. Shao, A. Edalati, T. R. McCollough, and W. J. McCollough, “A Time-Domain Measurement System for UWB Microwave Imaging,” IEEE Trans. Microw. Theory Tech., vol. 66, no. 5, pp. 2265–2275, 2018, https://doi.org/10.1109/TMTT.2018.2801862

  36. M. Z. Mahmud, M. T. Islam, N. Misran, S. Kibria, and M. Samsuzzaman, “Microwave imaging for breast tumor detection using uniplanar AMC Based CPW-fed microstrip antenna,” IEEE Access, vol. 6, no. c, pp. 44763–44775, 2018, https://doi.org/10.1109/ACCESS.2018.2859434.

  37. M. T. Islam, M. Z. Mahmud, M. T. Islam, S. Kibria, and M. Samsuzzaman, “A Low Cost and Portable Microwave Imaging System for Breast Tumor Detection Using UWB Directional Antenna array,” Sci. Rep., vol. 9, no. 1, pp. 1–13, 2019, https://doi.org/10.1038/s41598-019-51620-z

  38. S. S. Singhwal, B. K. Kanaujia, A. Singh, and J. Kishor, “Novel circularly polarized dielectric resonator antenna for microwave image sensing application,” Microw. Opt. Technol. Lett., vol. 61, no. 7, pp. 1821–1827, 2019, https://doi.org/10.1002/mop.31830

  39. G. Kaur and A. Kaur, “ Breast tissue tumor detection using ‘ S ’ parameter analysis with an UWB stacked aperture coupled microstrip patch antenna having a ‘ + ’ shaped defected ground structure ,” Int. J. Microw. Wirel. Technol., pp. 1–17, 2019, https://doi.org/10.1017/s1759078719001442.

  40. G. Kaur and A. Kaur, “Monostatic radar-based microwave imaging of breast tumor detection using a compact cubical dielectric resonator antenna,” Microw. Opt. Technol. Lett., no. January, pp. 1–9, 2020, https://doi.org/10.1002/mop.32557 https://onlinelibrary.wiley.com/doi/epdf/10.1002/mop.32557.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moin Uddin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, T., Vashishath , M., Vasisht, P. et al. A Versatile Ultra-Wideband Radio Sensor for Early Stage Detection of Breast Cancer. MAPAN 36, 891–901 (2021). https://doi.org/10.1007/s12647-021-00473-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-021-00473-x

Keywords

Navigation