Skip to main content
Log in

Cohomological invariants for central simple algebras of degree 8 and exponent 2

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

For a given field F of characteristic different from 2 and \(a,b,d\in F^*\) we construct an invariant \(\mathrm{inv}\) for an element \(D\in \,_2\mathrm{Br}(F(\sqrt{a},\sqrt{b},\sqrt{d})/F)\). This invariant takes value in the quotient group

$$\begin{aligned} H^3(F,\mu _2)/D\cup {\mathrm{N}_{\mathrm{F}\left( \sqrt{\mathrm{d}}, \sqrt{\mathrm{ab}}\right) /\mathrm{F}}}F\left( \sqrt{d},\sqrt{ab}\right) ^*. \end{aligned}$$

Let k be a field, let \(k(\sqrt{a},\sqrt{b},\sqrt{d})/k\) be a triquadratic field extension. We apply the invariant \(\mathrm{inv}\) and a few deep results from algebraic geometry and K-theory to construct a field extension K/k with \(\mathrm{cd}_2 K=3\), and an indecomposable cross product algebra of exponent 2 with respect to the extension \(K(\sqrt{a},\sqrt{b},\sqrt{d})/K\). Using the invariant \(\mathrm{inv}\), we also prove the following odd degree descent statement: Assume \(D\in \,_2\mathrm{Br}(F)\), \(b,d\in F^*\), L/F is an odd degree extension. Assume also that \(D_{L(\sqrt{b},\sqrt{d})}=Q_{L(\sqrt{b},\sqrt{d})}\), where Q is a quaternion algebra defined over L. Then there exists a quaternion algebra \(\widetilde{Q}\) defined over F such that \(D_{F(\sqrt{b},\sqrt{d})}=\widetilde{Q}_{F(\sqrt{b},\sqrt{d})}\). As a consequence we get that if \(\phi \in I^2(F)\) is a form such that \({(\phi _{L(\sqrt{b},\sqrt{d})})}_{an}\) is defined over L, and \(\dim {(\phi _{L(\sqrt{b},\sqrt{d})})}_{an} =4\) , then \({(\phi _{F(\sqrt{b},\sqrt{d})})}_{an}\) is defined over F.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arason, J.K.: Arason, Cohomologische Invarianten quadratischer Formen. J. Algebra 36, 448–491 (1975)

    Article  MathSciNet  Google Scholar 

  2. Barry, D.: Indecomposable and decomposable algebras of degree \(8\) and exponent \(2\) (with an appendix by Alexander Merkurjev). Math. Z. 276(3–4), 1113–1132 (2014)

    Article  MathSciNet  Google Scholar 

  3. Elman, R., Karpenko, N.A., Merkurjev, A.S.: The Algebraic and Geometric Theory of Quadratic Forms. American Mathematical Society, Providence (2008)

    Book  Google Scholar 

  4. Elman, R., Lam, T.Y., Wadsworth, A.: Amenable fields and Pfister extensions. In: ueen’s Papers in Pure and Applied Mathematics, vol. 46, pp.445–492 (1976)

  5. Elman, R., Lam, T.Y., Wadsworth, A.: Quadratic forms under multiquadratic extensions. Indag. Math. 42, 131–145 (1980)

    Article  MathSciNet  Google Scholar 

  6. Gille, P., Szamuely, T.: Central Simple Algebras and Galois Cohomology. Cambridge Studies in Advanced Mathematics, vol. 101. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  7. Izhboldin, O.T., Karpenko, N.A.: Generic splitting fields of central simple algebras: Galois cohomology and nonexcellence. Algebras Represent. Theory 2, 19–59 (1999)

    Article  MathSciNet  Google Scholar 

  8. Jacobson, N.: Some applications of Jordan norms to involutorial simple associative algebras. Adv. Math. 48, 149–165 (1983)

    Article  MathSciNet  Google Scholar 

  9. Karpenko, N.A.: Codimension 2 cycles on Severi–Brauer varieties. K-Theory 13, 305–330 (1998)

    Article  MathSciNet  Google Scholar 

  10. Lam, T.Y., Leep, D.B., Tignol, J.-P.: Biquaternion algebras and quartic extensions. Publ. Math. l’IHÉS 77, 63–102 (1993)

    Article  MathSciNet  Google Scholar 

  11. Merkurjev, A.S., Suslin, A.A.: The group \(K_3\) for a field. Math. USSR Izv. 38(3), 541–565 (1991)

    Article  Google Scholar 

  12. Rost, M.: Hilbert \(90\) for \(K_3\) for degree-two extensions, preprint (1986)

  13. Rowen, L.H.: Central simple algebras. Israel J. Math. 29, 285–301 (1978)

    Article  MathSciNet  Google Scholar 

  14. Sivatski, A.S.: Pairs of quadratic forms over a quadratic field extension. J. Pure Appl. Algebra 222(3), 560–567 (2018)

    Article  MathSciNet  Google Scholar 

  15. Sivatski, A.S.: Nonexcellence of multiquadratic field extensions. J. Algebra 275(2), 859–866 (2004)

    Article  MathSciNet  Google Scholar 

  16. Sivatski, A.S.: On indecomposable algebras of exponent \(2\). Israel J. Math. 164, 365–379 (2008)

    Article  MathSciNet  Google Scholar 

  17. Scharlau, W.: Quadratic and Hermitian forms. Springer, Berlin (1985)

    Book  Google Scholar 

  18. Tignol, J.-P.: Corps à involution neutralisés par une extension abélienne élémentaire. Springer Lecture Notes in Mathematics, vol. 844, pp. 1–34. Springer, Berlin (1981)

    Google Scholar 

  19. Voevodsky, V.: Motivic cohomology with \({\mathbb{Z}}/2\) coefficients. Publ. Math. Inst. Hautes Études Sci. 98, 59–104 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I express my gratitude to the referee for his remarks and comments, which have been very helpful for improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander S. Sivatski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivatski, A.S. Cohomological invariants for central simple algebras of degree 8 and exponent 2. manuscripta math. 169, 107–121 (2022). https://doi.org/10.1007/s00229-021-01320-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-021-01320-8

Mathematics Subject Classification

Navigation