Skip to main content
Log in

Synthesis, Structure, and Thermal Expansion of Triple Phosphates of Potassium–Strontium–Rare Earth Elements

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Polycrystalline phases of variable composition KxSr12 – 2xR4 + x(PO4)12 (R = Nd, Eu, and Gd; 0 ≤ x ≤ 4) with the structure of the mineral eulytite (space group I\(\overline 4 \)3d) have been synthesized by evaporation of the salt solution followed by heat treatment. Their structures have been studied by X-ray powder diffraction and IR spectroscopy, and electron probe studies have been carried out. The structure of KSr10Eu5(PO4)12 has been refined; it has been found that the neutral framework is formed by edge-linked metal-oxygen octahedra (K,Sr,Eu)O6 with PO4 tetrahedra located between them and attached to the octahedra by oxygen vertices. At temperature change, phosphates expand uniformly in all directions: αа = αb = αc = (9−12) × 10−6 K−1 without undergoing polymorphic transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. P. Abhilash, M. T. Sebastian, and K. P. Surendran, J. Eur. Ceram. Soc. 36, 1939 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.02.019

    Article  CAS  Google Scholar 

  2. X. Chen, Z. Gong, Q. Wan, et al., Opt. Mater. 44, 48 (2015). https://doi.org/10.1016/j.optmat.2015.02.029

    Article  CAS  Google Scholar 

  3. M. Ishii, K. Harada, Y. Hirose, et al., Opt. Mater. 19, 201 (2002). https://doi.org/10.1016/S0925-3467(01)00220-8

    Article  CAS  Google Scholar 

  4. T. Znamierowska, W. Szuskiewicz, J. Hanuza, et al., J. Alloys Compd. 341, 371 (2002). https://doi.org/10.1016/S0925-8388(02)00040-3

    Article  CAS  Google Scholar 

  5. P. P. Sahoo, E. Gaudin, J. Darriet, and T. N. Guru Row, Mater. Res. Bull. 44, 812 (2009). https://doi.org/10.1016/j.materresbull.2008.09.022

    Article  CAS  Google Scholar 

  6. N. Guo, Y. Huang, Y. Jia, et al., Dalton Trans. 42, 941 (2013). https://doi.org/10.1039/C2DT31657A

    Article  CAS  PubMed  Google Scholar 

  7. X. Zhang, C. Zhou, J. Song, et al., J. Alloys Compd. 592, 283 (2014). https://doi.org/10.1016/j.jallcom.2014.01.018

    Article  CAS  Google Scholar 

  8. H. Ji, Z. Huang, Z. Xia, et al., Dalton Trans. 44, 7679 (2015). https://doi.org/10.1039/C4DT03887H

    Article  CAS  PubMed  Google Scholar 

  9. B. Yang, Z. Yang, Y. Liu, et al., Ceram. Int. 38, 4895 (2012). https://doi.org/10.1016/j.ceramint.2012.02.080

    Article  CAS  Google Scholar 

  10. N. Guo, Y. Zheng, Y. Jia, et al., New J. Chem. 36, 168 (2012). https://doi.org/10.1039/C1NJ20532C

    Article  CAS  Google Scholar 

  11. B. Fan, W. Zhao, and L. Han, Appl. Phys. A 126, 260 (2020). https://doi.org/10.1007/s00339-020-3444-5

    Article  CAS  Google Scholar 

  12. M. Sugantha, N. R. S. Kumar, and U. V. Varadaraju, Waste Manag. 18, 275 (1998). https://doi.org/10.1016/S0956-053X(98)00026-9

    Article  CAS  Google Scholar 

  13. D. J. Segal, R. P. Santoro, and R. E. Newham, Z. Kristallogr. 123, 73 (1966). https://doi.org/10.1524/zkri.1966.123.16.73

    Article  CAS  Google Scholar 

  14. R. Perret and M. Damak, J. Less-Common Met. 108, 23 (1985). https://doi.org/10.1016/0022-5088(85)90428-X

    Article  CAS  Google Scholar 

  15. J. Barbier, J. Solid State Chem. 101, 249 (1992). https://doi.org/10.1016/0022-4596(92)90181-T

    Article  CAS  Google Scholar 

  16. G. Blasse, J. Solid State Chem. 2, 27 (1970). https://doi.org/10.1016/0022-4596(70)90028-9

    Article  CAS  Google Scholar 

  17. R. Perret, S. Pinson, and M. Damak, J. Less-Common Met. 116, L5 (1986). https://doi.org/10.1016/0022-5088(86)90674-0

    Article  CAS  Google Scholar 

  18. B. G. Vats, R. Phatak, K. Krishnan, et al., J. Alloys Compd. 690, 561 (2017). https://doi.org/10.1016/j.jallcom.2016.08.122

    Article  CAS  Google Scholar 

  19. I. A. Sobolev, M. I. Ozhovan, T. D. Shcherbatova, and O. G. Batyukhnova, Glass for Radioactive Waste (Energoatomizdat, Moscow, 1999) [in Russian].

    Google Scholar 

  20. V. I. Pet’kov, A. S. Dmitrienko, and A. I. Bokov, J. Therm. Anal. Calorim. 133, 199 (2018). https://doi.org/10.1007/s10973-017-6676-7

    Article  CAS  Google Scholar 

  21. V. I. Pet’kov, A. I. Bokov, E. A. Asabina, et al., Russ. J. Inorg. Chem. 64, 1354 (2019). https://doi.org/10.1134/S0036023619110159

    Article  Google Scholar 

  22. H. M. Rietveld, Acta Crystallogr. 22, 151 (1967). https://doi.org/10.1107/S0365110X67000234

    Article  CAS  Google Scholar 

  23. Y. I. Kim and F. Izumi, J. Ceram. Soc. Jpn. 102, 401 (1994). https://doi.org/10.2109/jcersj.102.401

    Article  CAS  Google Scholar 

  24. Izumi F., The Rietveld Method, Ed. by Young C. A. (Oxford Univ. Press, Oxford, 1993).

    Google Scholar 

  25. A. V. Knyazev, M. E. Komshina, A. V. Zhidkov, et al., Russ. J. Inorg. Chem. 58, 1172 (2013). https://doi.org/10.7868/S0044457X13100140

    Article  CAS  Google Scholar 

  26. R. V. Shpanchenko, R. V. Panin, J. Hadermann, et al., J. Solid State Chem. 178, 3715 (2005). https://doi.org/10.1016/j.jssc.2005.09.045

    Article  CAS  Google Scholar 

  27. R. S. Bubnova, M. G. Krzhizhanovskaya, and S. K. Filatov, Practical Guide to Thermal X-ray Diffraction of Polycrystals, Part 1 (Saint Petersburg State University, St. Petersburg, 2011) [in Russian].

    Google Scholar 

  28. V. A. Drebushchak, J. Therm. Anal. Calorim. 142, 1097 (2020). https://doi.org/10.1007/s10973-020-09370-y

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-29-12063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Pet’kov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pet’kov, V.I., Bokov, A.I., Asabina, E.A. et al. Synthesis, Structure, and Thermal Expansion of Triple Phosphates of Potassium–Strontium–Rare Earth Elements. Russ. J. Inorg. Chem. 66, 799–805 (2021). https://doi.org/10.1134/S0036023621060152

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621060152

Keywords:

Navigation