Skip to main content
Log in

Influence of Torsional Strains on the Band Structure of Carbon Nanotubes according to the Cylindrical Waves Method

  • THEORETICAL INORGANIC CHEMISTRY
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Changes in the band structure of carbon nanotubes induced by twisting of the tubes around their axes are studied by quantum-chemical methods, namely, the symmetrized augmented cylindrical waves ab initio method. The effects of torsional modes on the electronic properties of achiral and chiral, semiconducting, metal, and quasi-metal nanotubes are calculated. It is found that, due to the intersection of dispersion curves, twisting of chiral tubes leads to complex dependences of the optical gap on the torsional mode amplitude. In zigzag-type achiral semiconductor tubes, the band structure and band gaps are stable toward torsional modes. In armchair tubes twisting leads to the rapid formation and increase of the band gap. In chiral and achiral, metallic and quasi-metallic nanotubes, the optical gap increases independently of the tube twisting direction, while in semiconductor nanotubes, it depends thereon. Our results can be used for the design of elements of nanoelectromechanical carbon nanotube systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998).

    Book  Google Scholar 

  2. P. N. D’yachkov, Electronic Properties and Applications of Nanotubes (Laboratoriya znanii, Moscow, 2020) [in Russian].

  3. J. P. Lu, Phys. Rev. Lett. 79, 1297 (1997). https://doi.org/10.1103/PhysRevLett.79.1297

    Article  CAS  Google Scholar 

  4. T. Changa, Appl. Phys. Lett. 90, 201910 (2007). https://doi.org/10.1063/1.2739325

    Article  CAS  Google Scholar 

  5. H. G. Craighead, Science 290, 1532 (2000). https://doi.org/10.1126/science.290.5496.1532

    Article  CAS  PubMed  Google Scholar 

  6. M. Z. Wang, in Encyclopedia of Nanotechnology, Ed. by Bhushan B. (Springer, Dordrecht, 2015).

    Google Scholar 

  7. H. Y. Chiu, P. Hung, H. W. C. Postma, et al., Nano Lett. 8, 4342 (2008). https://doi.org/10.1021/nl802181c

    Article  CAS  PubMed  Google Scholar 

  8. J. Chaste, A. Eichler, J. Moser, et al., Nature Nanotechnol. 7, 301 (2012). https://doi.org/10.1038/nnano.2012.42

    Article  CAS  Google Scholar 

  9. J. Moser, J. Güttinger, A. Eichler, et al., Nature Nanotechnol. 8, 493 (2013). https://doi.org/10.1038/ncomms3843

    Article  CAS  Google Scholar 

  10. K. Jensen, J. Weldon, H. Garcia, et al., Nano Lett. 7, 3508 (2007). https://doi.org/10.1021/nl0721113

    Article  CAS  PubMed  Google Scholar 

  11. L. Yang, M. P. Anantram, J. Han, et al., Phys. Rev. 60, 13874 (1999). https://doi.org/10.1103/PhysRevB.60.13874

    Article  CAS  Google Scholar 

  12. L. Yang and J. Han, Phys. Rev. Lett. 85, 154 (2000). https://doi.org/10.1103/PhysRevLett.85

    Article  CAS  PubMed  Google Scholar 

  13. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 78, 1932 (1997). https://doi.org/10.1103/PhysRevLett.78.1932

    Article  CAS  Google Scholar 

  14. J. E. Bundera and J. M. Hill, J. Appl. Phys. 107, 023511 (2010). https://doi.org/10.1063/1.3289320

    Article  CAS  Google Scholar 

  15. R. Heyd, A. Charlier, and E. McRae, Phys. Rev. 55, 6820. https://doi.org/10.1103/PhysRevB.55.6820

  16. S. Dmitrović, I. Milošević, M. Damnjanović, et al., J. Phys. Chem. C 119, 13922 (2015). https://doi.org/10.1021/acs.jpcc.9b10718

    Article  CAS  Google Scholar 

  17. A. Rochefort, P. Avouris, F. Lesage, et al., Phys. Rev. B 60, 13824 (1999). https://doi.org/10.1103/PhysRevB.60.13824

    Article  CAS  Google Scholar 

  18. S. W. D. Bailey, D. Tomanek, Y.-K. Kwon, et al., Europhys. Lett. 59, 75 (2002). https://doi.org/10.1209/epl/i2002-00161-8

    Article  CAS  Google Scholar 

  19. D.-B. Zhang, R. D. James, and T. Dumitrică, Phys. Rev. B 80, 115418 (2009). https://doi.org/10.1103/PhysRevB.80.115418

    Article  CAS  Google Scholar 

  20. K. Kato, T. Koretsune, and S. Saito, J. Phys.: Conf. Ser. 302, 012007 (2011). https://doi.org/10.1088/1742-6596/302/1/012007

    Article  CAS  Google Scholar 

  21. K. Kato, T. Koretsune, and S. Saito, Phys. Rev. B 85, 115448 (2012). https://doi.org/10.1103/PhysRevB.85.115448

    Article  CAS  Google Scholar 

  22. P. N. D’yachkov and D. V. Makaev, Phys. Rev. B 76, 195411 (2007). https://doi.org/10.1103/PhysRevB.76.195411

    Article  CAS  Google Scholar 

  23. P. N. D’yachkov, Quantum Chemistry of Nanotubes: Electronic Cylindrical Waves (CRC Press, Taylor and Francis, London, 2019).

    Book  Google Scholar 

  24. C. T. White, D. H. Robertson, and J. W. Mintmire, Phys. Rev. B 47, 5485 (1993). https://doi.org/10.1103/PhysRevB.47.5485

    Article  CAS  Google Scholar 

  25. T. Cohen-Karni, L. Segev, O. Srur-Lavi, et al., Nature Nanotechnol. 1, 36 (2006). https://doi.org/10.1038/nnano.2007.179

    Article  CAS  Google Scholar 

  26. P. N. D’yachkov, Russ. J. Inorg. Chem. 63, 55 (2018). https://doi.org/10.1134/S0036023618010072

    Article  Google Scholar 

  27. P. N. D’yachkov and I. A. Bochkov, Russ. J. Inorg. Chem. 64, 114 (2019). https://doi.org/10.1134/S0036023619010066

    Article  Google Scholar 

Download references

AKNOWLEDGMENTS

This work was fulfilled in the frame of the Governmental assignment to the Kurnakov Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. D’yachkov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by O. Fedorova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’yachkov, P.N. Influence of Torsional Strains on the Band Structure of Carbon Nanotubes according to the Cylindrical Waves Method. Russ. J. Inorg. Chem. 66, 852–860 (2021). https://doi.org/10.1134/S0036023621060085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621060085

Keywords

Navigation