Skip to main content
Log in

Thermodynamic Properties Assessment of CaO-Al2O3-Ce2O3 System

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The blank of thermodynamic properties in the CaO-Al2O3-Ce2O3 basic slag system limits the application of rare earth element in relevant materials. In the current work, H, Cp (298 K), and Cp (T) of ternary oxide minerals were estimated using the split-combination method, Neumann–Kopp rule, and Kubaschewski method, respectively. Then, a thermodynamic model for calculating the activity of oxides in the CaO-Al2O3-Ce2O3 system, i.e., the IMCT-ai model, has been developed based on IMCT and by introducing the correction coefficient Fi according to the phase diagram theory. And the relationship between the correction coefficient and the compositions was established. Compared with the IMCT model, the good agreement between the calculated activity by the IMCT-ai model and the reported activity indicated that the IMCT-ai model can be applied to predict the activity of the CaO-Al2O3-Ce2O3 system. Furthermore, iso-activity curves of oxides in the CaO-Al2O3-Ce2O3 ternary systems were estimated at 1500 °C, 1550 °C, and 1600 °C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W.M. Garrison, J.L. Maloney: Mater. Sci. Eng. A, 2005, vol. 403, pp. 299–310.

  2. G. Qiu, X. Li, T. Qiu, et al.: J. Rare Earths, 2007, vol. 25, pp. 281-286.

    Article  CAS  Google Scholar 

  3. R. Borges, J. F. Schneider, J. Marchi: J. Mater. Sci, 2019, vol. 54, pp. 11390-11399.

    Article  CAS  Google Scholar 

  4. N. Liu, J. Zhang, Y. Duan, et al: J. Eur. Ceram. Soc, 2020, vol. 40, pp. 1132-1138.

    Article  CAS  Google Scholar 

  5. J. Qi, C. Liu, D. Yang, et al: Steel Res. Int, 2016, vol. 87, pp. 890-898.

    Article  CAS  Google Scholar 

  6. T. Wen, L. Yuan, E. Jin, et al: Int. J. Appl Ceram. Technol, 2020, vol. 17, pp. 1761-1768.

    Article  CAS  Google Scholar 

  7. S. Ueda, K. Morita, N. Sano: ISIJ Int, 1998, vol. 38, pp. 1292-1296.

    Article  CAS  Google Scholar 

  8. R. Kitano, M. Ishii, U. Motohiro, et al: ISIJ Int, 2016, vol. 56, pp. 1893-1901.

    Article  CAS  Google Scholar 

  9. C. Wu, G. Cheng, H. Long, et al: High Temp. Mater. Processes, 2013, vol. 32, pp. 207-214.

    Article  CAS  Google Scholar 

  10. I. Barin. Thermochemical data of pure substances, VCH, 1989.

  11. B. Hallstedl: J. Am. Ceram. Soc, 1990, vol. 73, pp. 15-23.

    Article  Google Scholar 

  12. P. Wu, A. D. Pelton: J. Alloys Compd, 1992, vol. 179, pp. 259-287.

    Article  CAS  Google Scholar 

  13. X. Li, L. Yang, Q. Zhou, et al.: Appl. Clay Sci, 2020, vol. 185, pp. 105406.

    Article  CAS  Google Scholar 

  14. J. Leitner, P. Chuchvalec, D. Sedmidubsky, et al.: Thermochim. Acta, 2002, vol. 395, pp. 27-46.

    Article  Google Scholar 

  15. KUBASCHEWSKI O; UENAL H: HIGH TEMPER. –HIGH PRESS, 1977, vol. 9, pp. 361-365.

    CAS  Google Scholar 

  16. J. Zhang: Computational Thermodynamics of Metallurgical Melts and Solutions, Metallurgical Industry Press, Beijing, China, 2007.

    Google Scholar 

  17. X. Liu, Z. Bai, Y. Shuang, C. Zhou, J. Shao: Appl. Mech. Mater., 2012, vol. 217-219, pp.39-42.

    Google Scholar 

  18. P. Wang, T. Ma, J. Zhang: Iron Steel, 1996, vol. 31, pp. 27–31.

    CAS  Google Scholar 

  19. H. Guo, Y. Hu, D. Cang, Y. Jin, L. Wang, X. Cheng, et al: Chin. Chem. Lett., 2010, vol. 21, pp. 229-233.

    Article  CAS  Google Scholar 

  20. C. Shi, X. Yang, J S Jiao, et al: ISIJ Int, 2010, vol. 50, pp. 1362-1372.

    Article  CAS  Google Scholar 

  21. X. Yang, et al: Ironmaking Steelmaking, 2016, vol. 44, pp. 437-454.

    Article  Google Scholar 

  22. X. Yang, C. Shi, M. Zhang, et al: Metall. Mater. Trans. B, 2011, vol. 42, pp. 1150-1180.

    Article  Google Scholar 

  23. X. Yang, J. Jiao, R. Ding, et al.: ISIJ Int, 2009, vol. 12, pp. 1828-1837.

    Article  Google Scholar 

  24. X. Yang, C. Shi, M. Zhang, and J. Zhang: Steel Res. Int, 2012, vol. 83, pp. 244-258.

    Article  CAS  Google Scholar 

  25. C. Wu, G. Cheng, J. Tian: High Temp. Mater. Processes, 2013, vol. 32, pp. 541-550.

    Article  CAS  Google Scholar 

  26. Z. Yu. Fundamental Research on Control of Spinel type Inclusions in Medium Manganese Steel [D]. Shen Yang: Northeastern University, 2019.

    Google Scholar 

  27. Y. Liang, Y. Che, Inorganic thermodynamic data manual, Northeastern University Press, Shenyang, China, 1993.

    Google Scholar 

  28. S. Chapman. Matlab Programming for Engineers, 6th Edition, 2011.

  29. J. Björkvall, S. Du, S. Seetharaman: Calphad, 2000, Vol. 24, pp. 353-376.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge supports by the National Key R&D Program of China [2017YFC0805100], the National Natural Science Foundation of China [No. 51874082], and the National Natural Science Foundation of China- Liaoning Joint Foundation [No. U1908224].

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengjun Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted Februray 25, 2021; accepted May 26, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Liu, C. Thermodynamic Properties Assessment of CaO-Al2O3-Ce2O3 System. Metall Mater Trans B 52, 3183–3192 (2021). https://doi.org/10.1007/s11663-021-02245-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02245-z

Navigation