Skip to main content
Log in

Boundary expansions of complete conformal metrics with negative Ricci curvatures

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study the boundary behaviors of a complete conformal metric which solves the \(\sigma _k\)-Ricci problem on the interior of a manifold with boundary. We establish asymptotic expansions and also \(C^1\) and \(C^2\) estimates for this metric multiplied by the square of the distance in a small neighborhood of the boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson, M.: Boundary regularity, uniqueness and non-uniqueness for AH Einstein metrics on 4-manifolds. Adv. Math. 179, 205–249 (2003)

    Article  MathSciNet  Google Scholar 

  2. Andersson, L., Chru\(\acute{s}\)ciel, P.T., Friedrich, H. : On the regularity of solutions to the Yamabe equation and the existence of smooth hyperboloidal initial data for Einstein’s field equations. Comm. Math. Phys. 149, 587–612 (1992)

  3. Aviles, P., McOwen, R.C.: Complete conformal metrics with negative scalar curvature in compact Riemannian manifolds. Duke. Math. J. 56, 395–398 (1988)

    Article  MathSciNet  Google Scholar 

  4. Biquard, O., Herzlich, M.: Analyse sur un demi-espace hyperbolique et poly-homogeneite locale, arXiv:1002.4106

  5. Brooks, R.: A construction of metrics of negative Ricci curvature. J. Diff. Geom. 29(1), 85–94 (1989)

    MathSciNet  MATH  Google Scholar 

  6. Chruściel, P., Delay, E., Lee, J., Skinner, D.: Boundary regularity of conformally compact Einstein metrics. J. Diff. Geom. 69, 111–136 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Caffarelli, L., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian. Acta Math. 155(3–4), 261–301 (1985)

    Article  MathSciNet  Google Scholar 

  8. Chang, A., Gursky, M., Yang, P.: An a priori estimate for a fully nonlinear equation on four-manifolds. J. Anal. Math. 87, 151–186 (2002)

    Article  MathSciNet  Google Scholar 

  9. Cheng, S.-Y., Yau, S.-T.: On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Fefferman’s equation. Comm. Pure Appl. Math. 33, 507–544 (1980)

    Article  MathSciNet  Google Scholar 

  10. Fefferman, C.: Monge-Ampère equation, the Bergman kernel, and geometry of pseudoconvex domains. Ann. Math. 103, 395–416 (1976)

    Article  MathSciNet  Google Scholar 

  11. Zhiyong Gao, L., Yau, S.-T.: The existence of negatively Ricci curved metrics on three-manifolds. Invent. Math. 85(3), 637–652 (1986)

    Article  MathSciNet  Google Scholar 

  12. Garding, L.: An inequality for hyperbolic polynomials. J. Math. Mech. 8, 957–965 (1959)

    MathSciNet  MATH  Google Scholar 

  13. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1983)

    Book  Google Scholar 

  14. Lee, J., Melrose, R.: Boundary behavior of the complex Monge-Ampère equation. Acta Math. 148, 159–192 (1982)

    Article  MathSciNet  Google Scholar 

  15. Robin Graham, C.: Volume renormalization for singular Yamabe metrics,arXiv:1606.00069

  16. Guan, B.: Complete conformal metrics of negative Ricci curvature on compact manifolds with boundary. Int. Math. Res. Not. (2008)

  17. Gursky, M., Streets, J., Warren, M.: Existence of complete conformal metrics of negative Ricci curvature on manifolds with boundary. Calc. Var. Partial. Differ. Equ. 41(1), 21–43 (2011)

    Article  MathSciNet  Google Scholar 

  18. Gursky, M., Viaclovsky, J.: Fully nonlinear equations on manifolds with negative curvature. Indiana Univ. Math. J. 52(2), 399–419 (2003)

    Article  MathSciNet  Google Scholar 

  19. Helliwell, D.: Boundary regularity for conformally compact Einstein metrics in even dimensions. Comm. P.D.E. 33, 842–880 (2008)

    Article  MathSciNet  Google Scholar 

  20. Yan, Y.L.: Some existence results for fully nonlinear elliptic equations of MongeAmp\(\grave{e}\)re type. Comm. Pure Appl. Math. 43(2), 233271 (1990)

    Google Scholar 

  21. Loewner, C., Nirenberg, L.: Partial diferential equations invariant under conformal or projective transformations, Contributions to Analysis, 245–272. Academic Press, New York (1974)

    MATH  Google Scholar 

  22. Lohkamp, J.: Metrics of negative Ricci curvature. Ann. of Math. (2) 140(3), 655–683 (1994)

    Article  MathSciNet  Google Scholar 

  23. Mazzeo, R.: Regularity for the singular Yamabe problem. Indiana Univ. Math. J. 40, 1277–1299 (1991)

    Article  MathSciNet  Google Scholar 

  24. Robert, C.: Reilly, On the Hessian of a function and the curvatures of its graph. Michigan Math. J. 20, 373–383 (1973)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Wang.

Additional information

Communicated by A.Chang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

5. Appendix

5. Appendix

Principle coordinates are discussed in details in [13]. In this appendix, we collect several results from [13] most relevant to our study.

Let \(\Omega \subset {\mathbb {R}}^n\) be a bounded domain with a smooth boundary \(\partial \Omega \) and d be the distance function to \(\partial \Omega \). Set \(\Gamma _\mu =\{x\in {\overline{\Omega }}|d(x)<\mu \}\) for sufficiently small \(\mu \).

According to Lemma 14.16 [13], for each point \(x\in \Gamma _\mu ,\) there exists a unique point \(y=y(x)\in \partial \Omega \) such that \(|x-y(x)|=d(x).\) The points x and y are related by \(x=y(x)+\nu (y(x))d(x),\) where \(\nu \) is the unit inner normal vector to \(\partial \Omega \).

Next, let \(x_0\in \Gamma _\mu \) and \(y_0\in \partial \Omega \) be related by \(|x_0-y_0|=d(x_0).\) According to Lemma 14.17 [13], in terms of a principle coordinate system at \(y_0,\) we have

$$\begin{aligned} D^2d(x_0)=\text {diag}\Big (\frac{-\kappa _1}{1-\kappa _1d},\cdots , \frac{-\kappa _{n-1}}{1-\kappa _{n-1}d},0\Big ), \end{aligned}$$
(5.1)

where \(\kappa _1,\cdots , \kappa _{n-1}\) are the principle curvatures of \(\partial \Omega \) at \(y_0\). By the proof of Lemma 14.17 [13], we also have

$$\begin{aligned} Dd(x_0)=\nu (y_0)=(0,0,\cdots ,1). \end{aligned}$$
(5.2)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y. Boundary expansions of complete conformal metrics with negative Ricci curvatures. Calc. Var. 60, 131 (2021). https://doi.org/10.1007/s00526-021-02010-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02010-9

Navigation