Skip to main content
Log in

The Effect of Zinc Oxide on the Physical and Mechanical Properties of Elastic Polymers

  • NANOSCALE AND NANOSTRUCTURED MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The area of local inelasticity in latex elastic polymers filled and unfilled with zinc oxide powder in comparison with metallic zinc was investigated by the method of internal friction. The studies were carried out in the wide temperature range of from –150 to 50°C of the method of freely damped torsional vibrations. In the spectra of the internal friction of polymers, several dissipative losses of different intensities were found located in different temperature ranges. A decrease in the intensity of the α-relaxation process during filling was found in both cases. At the same time, in the presence of zinc powder, an expansion of the glass transition temperature region was found due to positive temperatures, while there was a narrowing of this region due to the low-temperature region in the presence of zinc oxide. In addition to α-relaxation, another, less intense, β-relaxation process was discovered. When zinc oxide is introduced into the polymer, its intensity decreases. The temperature dependences of the frequency of the oscillatory process are obtained, on the basis of which the regions of inelasticity and their change during filling are established. A theoretical analysis of the effect of fillers on the physical and mechanical characteristics of relaxation processes is carried out. At subzero temperatures, several µ-relaxation processes were revealed, the intensities of which depend on the filler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Tolmachev, I.A. and Petrenko, N.A., Pigmenty i ikh primenenie v kraskakh (Pigments and their Application for Colors), Moscow: Peint-Media, 2012, p. 56.

  2. Kaverinskii, V.S. and Kaverinskii, D.V., Lakokras. Mater. Ikh Primen., 2017, no. 11, pp. 38–42.

  3. Özgür, Ü., Alivov, Ya.I., Liu, C., Teke, A., Reshchikov, M.A., Doğan, S., Avrutin, V., Cho, S.-J., and Morkoç, H., J. Appl. Phys., 2005, vol. 98, p. 041301. https://doi.org/10.1063/1.1992666

    Article  CAS  Google Scholar 

  4. Semaltianos, N.G., Logothetidis, S., Hastas, N., Perrie, W., Romani, S., Potter, R.J., Dearden, G., Watkins, K.G., French, P., and Sharp, M., Chem. Phys. Lett., 2010, vol. 484, nos. 4–6, pp. 283–289. https://doi.org/10.1016/j.cplett.2009.11.054

  5. Petrunin, M.A., Maksaeva, L.B., Yurasova, T.A., Terekhova, E.V., Maleeva, M.A., Scherbina, A.A., Kotenev, V.A., Kablov, E.N., and Tsivadze, A.Yu., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, no. 6, p. 784.

    Article  CAS  Google Scholar 

  6. Petrunin, M.A., Maksaeva, L.B., Yurasova, T.A., Terekhova, E.V., Maleeva, M.A., Kotenev, V.A., Kablov, E.N., and Tsivadze, A.Yu., Prot. Met. Phys. Chem. Surf., 2015, vol. 51, no. 6, p. 1010.

    Article  CAS  Google Scholar 

  7. Petrunin, M.A., Maksaeva, L.B., Yurasova, T.A., Gladkikh, N.A., Terekhova, E.V., Kotenev, V.A., Kablov, E.N., and Tsivadze, A.Yu., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 6, p. 964.

    Article  CAS  Google Scholar 

  8. Ellmer, K., in Handbook of Transparent Conductors, Ginley, D., Ed., Boston, MA: Springer, 2011. https://doi.org/10.1007/978-1-4419-1638-9_7.

  9. Polimerizatsionnye plenkoobrazovateli (Polymerizing Film-Forming Agents), Eliseeva, V.I., Ed., Moscow: Khimiya, 1971, p. 84.

    Google Scholar 

  10. Bartenev, G.M., Lomovskoy, V.A., and Lomovskaya, N.Yu., Polym. Sci., Ser. A, 1994, vol. 36, no. 9, pp. 1273–1281.

    Google Scholar 

  11. Tager, A.A., Fizikokhimiya polimerov (Physical Chemistry of Polymers), Moscow: Nauchnyi Mir, 2007.

  12. Lomovskoi, V.A., Abaturova, N.A., Lomovskaya, N.Yu., Khlebnikova, O.V., and Galushko, T.B., Materialovedenie, 2010, no. 1, pp. 29–34.

  13. Valishin, A.A., Gorshkov, A.A., and Lomovskoy, V.A., Mech. Solids (Engl. Transl.), 2011, vol. 46, no. 2, pp. 299–310.

  14. Aslamazova, T.R., Kotenev, V.A., Lomovskaya, N.Yu., Lomovskoi, V.A., and Tsivadze A.Yu, Theor. Found. Chem. Eng., 2019, vol. 53, no. 3, pp. 346–354. https://doi.org/10.1134/S0040579519030023

    Article  CAS  Google Scholar 

  15. Aslamazova, T.R., Vysotskii, V.V., Zolotarevskii, V.I., Kotenev, V.A., Lomovskoi, V.A., and Tsivadze, A.Yu., Prot. Met. Phys. Chem. Surf., 2021, in press.

  16. Aslamazova, T.R., Zolotarevskii, V.I. Kotenev, V.A., and Tsivadze, A.Yu., Meas. Tech., 2019, vol. 62, no. 8, pp. 20–23. https://doi.org/10.1007/s11018-019-01678-y

    Article  CAS  Google Scholar 

  17. Aslamazova, T.R., Kotenev, V.A., Lomovskoi, V.A., and Tsivadze, A.Yu., Prot. Met. Phys. Chem. Surf., 2021, in press.

  18. Aslamazova, T.R., Kotenev, V.A., Lomovskaya, N.Yu., Lomovskoi, V.A., and Tsivadze, A.Yu., Theor. Found. Chem. Eng., 2020, vol. 54, no. 6, pp. 1205–1214.

    Article  CAS  Google Scholar 

  19. Aslamazova, T.R., Kotenev, V.A., Lomovskoi, V.A., and Tsivadze, A.Yu., Prot. Met. Phys. Chem. Surf., 2021, in press.

  20. Bartenev, G.M., Lomovskoy, V.A., and Lomovskaya, N.Yu., Polym. Sci., Ser. A, 1994, vol. 36, no. 9, pp. 1273–1281.

    Google Scholar 

  21. Lomovskoy, V.A., Nauchn. Priborostr., 2019, vol. 29, no. 1, pp. 33–46. https://doi.org/10.18358/np-29-1-i3346

    Article  Google Scholar 

  22. Wieser, M.E., Holden, N., Coplen, T.B., et al., Pure Appl. Chem., 2013, vol. 85, no. 5, pp. 1047–1078. https://doi.org/10.1351/PAC-REP-13-03-02

    Article  CAS  Google Scholar 

  23. Warren, S.G., Appl. Opt., 1984, vol. 23, no. 8, pp. 1206–1211. https://doi.org/10.1364/AO.23.001206

    Article  CAS  Google Scholar 

  24. Murray, B.J. and Bertram, A.K., Phys. Chem. Chem. Phys., 2006, vol. 110, pp. 136–145. https://doi.org/10.1039/B802216J.

    Article  Google Scholar 

  25. Gillan, M.J., Alfè, D., Bartók, A.P., and Csányi, G., J. Chem. Phys., 2013, vol. 139, no. 24, pp. 244–252. https://doi.org/10.1063/1.4852182

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Academy of Sciences, state assignment “Physicochemistry of Functional Materials Based on Architectural Ensembles of Metal-Oxide Nanostructures, Multilayer Nanoparticles, and Film Nanocomposites,” registry ID АААА-А19-119031490082-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Aslamazova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslamazova, T.R., Kotenev, V.A., Lomovskaya, N.Y. et al. The Effect of Zinc Oxide on the Physical and Mechanical Properties of Elastic Polymers. Prot Met Phys Chem Surf 57, 507–515 (2021). https://doi.org/10.1134/S2070205121030060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205121030060

Keywords:

Navigation