Skip to main content
Log in

Manganese Oxide Nanocomposite for adsorption of Cd(II) Ions from Aqueous Phase: Optimization by Experimental Design

  • PHYSICOCHEMICAL PROCESSES AT THE INTERFACES
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The objective of this study was to investigate the use of manganese oxide nanocomposite to remove Cd(II) ions from aqueous phase. The adsorption behavior was studied as a function of adsorbent mass, solution pH, and contact time. The response surface methodology (RSM) by Box–Behnken design (BBD) was employed to evaluate the effects of these three parameters on the removal ratio of the Cd(II) ions. In process optimization, maximum removal of Cd(II) ions was achieved as 100% with adsorbent mass 1g, solution pH of 8.0, and contact time of 27 min. The kinetics of adsorption process by comparative analyses of the applicability of four kinetic models, pseudo-first-order, pseudo-second-order, intraparticle diffusion and Elovich kinetic model was investigated. The adsorption kinetics of Cd(II) ions was well fitted with the pseudo-second order kinetic model. Equilibrium isotherm studies revealed that Langmuir and Redlich–Peterson isotherm models fitted better with the adsorption data in describing the adsorption behavior. Adsorption of Cd(II) ions on adsorbent is favorably influenced by an increase in the temperature of the operation. Values of the change in standard heat of adsorption (ΔH°), and entropy (ΔS°) were positive. The negative value of change in standard Gibbs free energy (ΔG°), indicates the feasible and spontaneous of Cd(II) ions on manganese oxide nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Ahmadi, A., Heidarzadeh, S., Mokhtari, A.R., Darezereshki, E., and Harouni, H.A., J. Geochem. Explor., 2014, vol. 147, no. PB, pp. 151–158.

  2. Sharma, Y.C., Chem. Eng. J., 2008, vol. 145, no. 1, pp. 64–68.

    Article  CAS  Google Scholar 

  3. Sheela, T., Nayaka, Y.A., Viswanatha, R., Basavanna, S., and Venkatesha, T.G., Powder Technol., 2012, vol. 217, pp. 163–170.

    Article  CAS  Google Scholar 

  4. Feng, Y., Gong, J.L., Zeng, G.M., Niu, Q.Y., Zhang, H.Y., Niu, C.G., Deng, J.H., and Yan, M., Chem. Eng. J., 2010, vol. 162, pp. 487–494.

    Article  CAS  Google Scholar 

  5. Asadi, F., Shariatmadari, H., and Mirghaffari, N., J. Hazard. Mater., 2008, vol. 154, nos. 1–3, pp. 451–458.

    Article  CAS  Google Scholar 

  6. Gupta, V.K. and Rastogi, A., J. Hazard. Mater., 2008, vol. 153, nos. 1–2, pp. 759–766.

    Article  CAS  Google Scholar 

  7. Shen, Y.F., Tang, J., Nie, Z.H., Wang, Y.D., Ren, Y., and Zuo, L., Sep. Purif. Technol., 2009, vol. 68, no. 3, pp. 312–319.

    Article  CAS  Google Scholar 

  8. Kheriji, J., Tabassi, D., and Hamrouni, B., Water Sci. Technol., 2015, vol. 72, no. 7, pp. 1206–1216.

    Article  CAS  Google Scholar 

  9. Tuutijärvi, T., Lu, J., Sillanpää, M., and Chen, G., J. Hazard. Mater., 2009, vol. 166, nos. 2–3, pp. 1415–1420.

    Article  CAS  Google Scholar 

  10. Nassar, N.N., J. Hazard. Mater., 2010, vol. 184, nos. 1–3, pp. 538–546.

    Article  CAS  Google Scholar 

  11. Han, H., Rafiq, M.K., Zhou, T., Xu, R., Mašek, O., and Li, X.A., J. Hazard. Mater., 2019, vol. 369, pp. 780–796.

    Article  CAS  Google Scholar 

  12. Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L., and Zhang, Q., J. Hazard. Mater., 2012, vols. 211–212, pp. 317–331.

    Article  CAS  Google Scholar 

  13. Soltani, R.D.C., Jafari, A.J., and Khorramabadi, G.S., Am. J. Environ. Sci., 2009, vol. 5, no. 1, pp. 41–46.

    Article  CAS  Google Scholar 

  14. Garg, U., Kaur, M.P., Jawa, G.K., Sud, D., and Garg, V.K., J. Hazard. Mater., 2008, vol. 154, nos. 1–3, pp. 1149–1157.

    Article  CAS  Google Scholar 

  15. Karthik, R. and Meenakshi, S., Chem. Eng. J., 2015, vol. 263, pp. 168–177.

    Article  CAS  Google Scholar 

  16. Liang, J., Li, X., Yu, Z., Zeng, G., Luo, Y., Jiang, L., Yang, Zh., Qian, Y., and Wu, H., ACS Sustainable Chem. Eng., 2017, vol. 5, no. 6, pp. 5049–5058.

    Article  CAS  Google Scholar 

  17. Wang, H., Wang, X., Ma, J., Xia, P., and Zhao, J., J. Hazard. Mater., 2017, vol. 5, no. 329, pp. 66–76.

    Article  CAS  Google Scholar 

  18. Genç-Fuhrman, H., Mikkelsen, P.S., and Ledin, A., Sci. Total Environ., 2016, vols. 566–567, pp. 76–85.

    Article  CAS  Google Scholar 

  19. Wu, S., Zhang, K., Wang, X., Jia, Y., Sun, B., Luo, T., Meng, F., Jin, Zh., Lin, D., Shen, W., Kong, L., and Liu, J., Chem. Eng. J., 2015, vol. 262, pp. 1292–1302.

    Article  CAS  Google Scholar 

  20. Montgomery, D.C., Design and Analysis of Experiments, New York: John Wiley and Sons, 2001.

    Google Scholar 

  21. Clarke, G.M., Khuri, A.I., and Cornell, J.A., Appl. Stat., 1988, vol. 37, no. 3, pp. 446–447.

    Article  Google Scholar 

  22. Mason, R.L., Gunst, R.F., and Hess, J.L., Statistical Design and Analysis of Experiments: With Applications to Engineering and Sciences, Wiley, 2003.

    Book  Google Scholar 

  23. Farhadravesh, Z., Langeroodi, N.S., and Khalaji, A.D., J. Surf. Invest., 2019, vol. 13, no. 5, pp. 985–989.

    Article  CAS  Google Scholar 

  24. Box, G.E.P. and Behnken, D.W., Technometrics, 1960, vol. 2, no. 4, pp. 455–475.

    Article  Google Scholar 

  25. Sawyer, C.N. and McCarty, P.L., Chemistry for Environmental Engineering, McGraw-Hill Series in Water Resources and Environmental Engineering, McGraw-Hill, 1978.

    Google Scholar 

  26. Ebel, V.H.F., Bliefert, C., and Russey, W.E., The Art of Scientific Writing: From Student Reports to Professional Publications in Chemistry and Related Fields, New York, 1988, vol. 92, no. 8, pp. 944A–945. Ebel, H.F., Bliefert, C., and Russey, W.E., The Art of Scientific Writing: From Student Reports to Professional Publications in Chemistry and Related Fields, New York: VCH, 1988.

  27. Hasan, R. and Setiabudi, H.D., J. King Saud Univ., Sci., 2019, vol. 31, no. 4, pp. 1182–1188.

    Google Scholar 

  28. Samadani Langeroodi, N., Farhadravesh, Z., and Khalaji, A.D., Green Chem. Lett. Rev., 2018, vol. 11, no. 4, pp. 404–413.

    Article  CAS  Google Scholar 

  29. Jaafari, J. and Yaghmaeian, K., Chemosphere, 2019, vol. 217, pp. 447–455.

    Article  CAS  Google Scholar 

  30. Tajari, E., Langeroodi, N.S., and Khalafi, M., Z. Phys. Chem., 2019, vol. 233, no. 8, pp. 1201–1214.

    Article  CAS  Google Scholar 

  31. Lagergren, S., About the theory of so-called adsorption of soluble substance, K. Sven. Vetenskapsakad. Handl., 1898, vol. 24, no. 4, pp. 1–39.

    Google Scholar 

  32. Ho, Y.S. and McKay, G., Chem. Eng. J., 1998, vol. 70, no. 2, pp. 115–124.

    Article  CAS  Google Scholar 

  33. Weber, J., Morris, W.J., and Sanit, J., J. Sanit. Eng. Div., Am. Soc. Civ. Eng., 1963, vol. 89, pp. 31–38.

    Article  Google Scholar 

  34. Chien, S.H. and Clayton, W.R., Soil Sci. Soc. Am. J., 1980, vol. 44, no. 2, pp. 265–268.

    Article  CAS  Google Scholar 

  35. James, A. and Schwarz, C.I.C., Surfaces of Nanoparticles and Porous Materials, CRC Press, 1999.

    Google Scholar 

  36. Langmuir, I., J. Am. Chem. Soc., 1918, vol. 40, pp. 1361–1403.

    Article  CAS  Google Scholar 

  37. Freundlich, H., Phys Chem. Soc., 1906, vol. 40, pp. 1361–1368.

    Google Scholar 

  38. Temkin, M.I. and Pyzhev, V., Acta Physicochim. URSS, 1940, vol. 12, pp. 327–356.

    CAS  Google Scholar 

  39. Redlich, O. and Peterson, D.L., J. Phys. Chem., 1959, vol. 63, no. 6, pp. 1024–1024.

    Article  CAS  Google Scholar 

  40. Wu, F.C., Liu, B.L., Wu, K.T., and Tseng, R.-L., Chem. Eng. J., 2010, vol. 162, pp. 21–27.

    Article  CAS  Google Scholar 

  41. Naiya, T.K., Bhattacharya, A.K., and Das, S.K., J. Colloid Interface Sci., 2009, vol. 333, no. 1, pp. 14–26.

    Article  CAS  Google Scholar 

  42. Silas, T.V., J. Appl. Biotechnol. Bioeng., 2017, vol. 2, no. 3, pp. 113–120.

    Google Scholar 

  43. Meng, K., Wu, X., Zhang, X., Su, S., Huang, Z., Min, X., Liu, Y., and Fang, M., ACS Omega, 2019, vol. 4, no. 20, pp. 18627–18636.

    Article  CAS  Google Scholar 

  44. Tang, N., Niu, C.G., Li, X.T., Liang, C., Guo, H., Lin, L.S., et al., Sci. Total. Environ., 2018, vol. 635, pp. 1331–1344.

    Article  CAS  Google Scholar 

Download references

Funding

The authors thank the Golestan University for providing financial support of the work described in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Samadani Langeroodi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafizadeh, M., Langeroodi, N.S. & Khalafi, M. Manganese Oxide Nanocomposite for adsorption of Cd(II) Ions from Aqueous Phase: Optimization by Experimental Design. Prot Met Phys Chem Surf 57, 445–454 (2021). https://doi.org/10.1134/S2070205121030199

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205121030199

Keywords:

Navigation