Skip to main content
Log in

Anticorrosion Behavior of Nickel-Rich Conductive Coating in Red Soil and the Effects of Fe2(SO4)3 on its Corrosion Resistance

  • NEW SUBSTANCES, MATERIALS, AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Anticorrosive conductive coatings were prepared by adding solvents, dispersants, nickel powders, etc. to acrylic resin coatings with high viscosity, and conductive coatings were prepared on the surface of Q235 steel. The effects of nickel powder contents on the corrosion resistance of the conductive coating were investigated in a red soil solution, for which electrochemical impedance spectroscopy, Tafel polarization curve and corrosion morphology analysis were used. Adding different concentrations of Fe2(SO4)3 to the red soil solution, the effect of Fe2(SO4)3 content on the corrosion resistance of the conductive coating was studied. The results show that anti-corrosion performance of the coating material is variable according to the degree of hydrolysis. Besides, the content of nickel powder and Fe2(SO4)3 is also related to the anti-corrosion performance. The higher the content of nickel powder, the worse the corrosion resistance. The higher the content of Fe2(SO4)3 in the red soil solution, the lower the coating impedance and the worse the corrosion resistance. Fe2(SO4)3 will accelerate the corrosion reaction. A Fe2(SO4)3 catalyzed kinetic mechanism is advanced to expound accelerated corrosion process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Zhao, J., Durham, N., Abdel-Hadi, K., McKenzie, C.A., and Thomson, D.J., Measurement, 2019, vol. 147, p. 106858.

    Article  Google Scholar 

  2. Liu, Y., Cui, X., and Zhao, Z., Front. Electr. Electron. Eng. China, 2010, vol. 5, p. 501.

    Article  Google Scholar 

  3. Hu, H., Luo, R., Fang, M., Zeng, S., and Hu, F., Int. J. Electr. Power Energy Syst., 2019, vol. 108, p. 61.

    Article  Google Scholar 

  4. Datsios, Z.G. and Mikropoulos, P.N., Electr. Power Syst. Res., 2017, vol. 150, p. 36.

    Article  Google Scholar 

  5. Zhang, Z., Mei, D., Dan, Y., Zou, J., Liu, G., and Gao, C., Electr. Power Syst. Res., 2020, vol. 178, p. 106049.

    Article  Google Scholar 

  6. Chen, G., Shah, K.J., Shi, L., Chiang, P.C., and You, Z., Environ. Pollut., 2019, vol. 254, p. 112964.

    Article  CAS  Google Scholar 

  7. Wang, S., Du, C., Li, X., Liu, Z., Zhu, M., and Zhang, D., Prog. Nat. Sci.: Mater. Int., 2015, vol. 25, p. 242.

    Article  CAS  Google Scholar 

  8. Yan, M., Sun, C., Dong, J., Xu, J., and Ke, W., Corros. Sci., 2015, vol. 97, p. 62.

    Article  CAS  Google Scholar 

  9. Yan, M., Sun, C., Xu, J., Dong, J., and Ke, W., Corros. Sci., 2014, vol. 80, p. 309.

    Article  CAS  Google Scholar 

  10. Nakhaie, D., Kosari, A., Mol, J.M.C., and Asselin, E., Corros. Sci., 2020, vol. 164, p. 108310.

    Article  CAS  Google Scholar 

  11. Soriano, C. and Alfantazi, A., Constr. Build. Mater., 2016, vol. 102, p. 904.

    Article  CAS  Google Scholar 

  12. Azoor, R.M., Deo, R.N., Birbilis, N., and Kodikara, J., Corros. Sci., 2019, vol. 159, p. 108116.

    Article  CAS  Google Scholar 

  13. Galai, M., Choucri, J., Hassani, Y., Benqlilou, H., Mansouri, I., Ouaki, B., Ebn Touhami, M., Monticelli, C., and Zucchi, F., Chem. Data Collect., 2019, vol. 19, p. 100171.

    Article  Google Scholar 

  14. Silva, R.S., Aleman, C., Ferreira, C.A., Armelin, E., Ferreira, J.Z., and Meneguzzi, A., Prog. Org. Coat., 2015, vol. 78, p. 116.

    Article  CAS  Google Scholar 

  15. Jeyasubramanian, K., Benitha, V.S., and Parkavi, V., Prog. Org. Coat., 2019, vol. 132, p. 76.

    Article  CAS  Google Scholar 

  16. Wang, L., Wang, M., and Chen, H., Surf. Coat. Technol., 2020, vol. 391, p. 125660.

    Article  CAS  Google Scholar 

  17. Huang, X., Yu, L., and Dong, Y., Prog. Org. Coat., 2020, vol. 139, p. 105446.

    Article  CAS  Google Scholar 

  18. Rajitha, K., Mohana, K.N.S., Mohanan, A., and Madhusudhana, A.M., Colloids Surf., A, 2020, vol. 587, p. 124341.

    Article  CAS  Google Scholar 

  19. Tian, Y., Xie, Y., Dai, F., Huang, H., Zhong, L., and Zhang, X., Surf. Coat. Technol., 2020, vol. 383, p. 125227.

    Article  Google Scholar 

Download references

Funding

A financial aid for the work was provided by Science and Technology Commission of Shanghai Municipality (17DZ2282800 and 19DZ2271100), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiangqiang Liao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z., Zhang, X., Tan, Y. et al. Anticorrosion Behavior of Nickel-Rich Conductive Coating in Red Soil and the Effects of Fe2(SO4)3 on its Corrosion Resistance. Prot Met Phys Chem Surf 57, 570–578 (2021). https://doi.org/10.1134/S2070205121030114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205121030114

Keywords:

Navigation