Skip to main content
Log in

Local solutions of the fast–slow model of an optoelectronic oscillator with delay

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study a difference–differential model of an optoelectronic oscillator that is a modification of the Ikeda equation with delay. We analyze the stability of the zero equilibrium state. We note that the number of roots of the characteristic equation of the linearized problem with the real part that is close to zero increases without bound for order parameter values tending to bifurcational ones. The asymptotics of such roots determines the asymptotic representation of solutions of the original problem that appear in a neighborhood of zero. An explicit change of variables allows finally obtaining equations of the special form for slow amplitudes that are independent of a small parameter and satisfy boundary conditions of the type of periodicity in one of the variables. It is convenient to consider such a variable as a spatial one, although the “fast” time plays this role. We determine amplitudes and frequencies of oscillatory components of the solutions. We formulate results about the correspondence between local solutions of the original system and nonlocal solutions of the partial differential equations playing the role of normal forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Giacomelli and A. Politi, “Relationship between delayed and spatially extended dynamical systems,” Phys. Rev. Lett., 76, 2686–2689 (1996).

    Article  ADS  Google Scholar 

  2. S. Yanchuk and G. Giacomelli, “Dynamical systems with multiple long-delayed feedbacks: multiscale analysis and spatiotemporal equivalence,” Phys. Rev. E, 92, 042903 (2015) 12.

    Article  ADS  MathSciNet  Google Scholar 

  3. A. Pimenov, S. Slepneva, G. Huyet, and A. G. Vladimirov, “Dispersive time-delay dynamical systems,” Phys. Rev. Lett., 118, 193901 (2017) 6.

    Article  ADS  Google Scholar 

  4. M. Bestehorn, E. V. Grigorieva, H. Haken, and S. A. Kaschenko, “Order parameters for class-B lasers with a long time delayed feedback,” Phys. D, 145, 110–129 (2000).

    Article  MathSciNet  Google Scholar 

  5. D. V. Glazkov, “Local dynamics of complex DDE with large delay feedback,” Nonlinear Phenom. Complex Syst., 13, 432–437 (2010).

    MathSciNet  MATH  Google Scholar 

  6. D. V. Glazkov, “Local dynamics of a second order equation with large exponentially distributed delay and considerable friction,” Model. Anal. Inform. Sist., 22, 65–73 (2015).

    Article  Google Scholar 

  7. E. V. Grigorieva, S. A. Kaschenko, and D. V. Glazkov, “Local dynamics of a model of an opto- electronic oscillator with delay,” Aut. Control Comp. Sci., 52, 700–707 (2018).

    Article  Google Scholar 

  8. E. V. Grigorieva and S. A. Kashchenko, “Slow and fast oscillations in a model of an optoelectronic oscillator with delay,” Dokl. Math., 99, 95–98 (2019).

    Article  Google Scholar 

  9. E. V. Grigorieva and S. A. Kashchenko, “Normalized boundary value problems in the model of optoelectronic oscillator delayed,” Izvestiya VUZ. Applied Nonlinear Dynamics, 28, 361–382 (2020).

    Google Scholar 

  10. E. F. Mishchenko and N. Kh. Rozov, Differential Equations with Small Parameters and Relaxation Oscillations, Plenum Press, New York (1980).

    Book  Google Scholar 

  11. E. F. Mishchenko, Yu. S. Kolesov, A. Yu. Kolesov, and N. Kh. Rozov, Periodic Motions and Bifurcation Processes in Singularly Perturbed Systems, Fizmatlit, Moscow (1995).

    MATH  Google Scholar 

  12. V. I. Arnol’d, V. S. Afraimovich, Yu. S. Ilyashenko, and L. P. Shilnikov, “Bifurcation theory,” in: Dynamical Systems, Bifurcation Theory and Catastrophe Theory (Encyclopaedia of Mathematical Sciences, Vol. 5, V. I. Arnold, ed.), Springer, Berlin–Heidelberg, pp. 1–205 (1989).

    Google Scholar 

  13. A. L. Prigorovskiy, V. M. Sandalov, T. A. Tananaeva, Zadachi po teorii kolebaniy, ustoychivosti dvizheniya i kachestvennoy teorii differentsial’nykh uravneniy, Chast’‘6. “Bystrye” i “medlennye” dvizheniya. Razryvnye kolebaniya i avtokolebaniya (in Russian), Nizhegorodskiy gos. un-t, Nizhniy Novgorod (2017).

    Google Scholar 

  14. E. Hairer and G. Vanner, Solving Ordinary Differential Equations II. Stiff and differential-algebraic problems (Springer Series in Computational Mathematics, Vol. 14), Springer (1991, 1996).

    Google Scholar 

  15. K. Ikeda and K. Matsumoto, “High-dimensional chaotic behavior in systems with time-delayed feedback,” Phys. D, 29, 223–235 (1987).

    Article  Google Scholar 

  16. M. Peil, M. Jacquot, Y. K. Chembo, L. Larger, and T. Erneux, “Routes to chaos and multiple time scale dynamics in broadband bandpass nonlinear delay electro-optic oscillators,” Phys. Rev. E, 79, 026208 (2009) 15.

    Article  ADS  Google Scholar 

  17. J. H. Talla Mbé, A. F. Talla, G. R. G. Chengui, A. Coillet, L. Larger, P. Woafo, and Y. K. Chembo, “Mixed-mode oscillations in slow-fast delay optoelectronic systems,” Phys. Rev. E, 91, 012902 (2015) 6.

    Article  ADS  Google Scholar 

  18. I. S. Kaschenko and S. A. Kaschenko, “Local dynamics of the two-component singular perturbed systems of parabolic type,” Internat. J. Bifur. Chaos, 25, 1550142 (2015) 27.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Funding

This paper was supported by the Russian Foundation for Basic Research, project No 18-29-10043.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Glazkov.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2021, Vol. 207, pp. 376-388 https://doi.org/10.4213/tmf10037.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glazkov, D.V. Local solutions of the fast–slow model of an optoelectronic oscillator with delay. Theor Math Phys 207, 727–737 (2021). https://doi.org/10.1134/S0040577921060040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577921060040

Keywords

Navigation