Skip to main content
Log in

Univariable affine fractal interpolation functions

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

An overview of affine fractal interpolation functions using a suitable iterated function system is presented. Furthermore, a brief and coarse discussion on the theory of affine fractal interpolation functions in 2D and their recent developments including some of the research done by the authors is provided. Moreover, the desired range of the contractivity factors of an affine fractal interpolation surface are identified such that it is monotonic and positive for the respective monotonic and positive surface data. All the shape-preserving fractal schemes developed here are verified by numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. J. E. Hutchinson, “Fractals and self-similarity,” Indiana Univ. Math. J., 30, 713–747 (1981).

    Article  MathSciNet  Google Scholar 

  2. M. F. Barnsley, “Fractal functions and interpolation,” Constr. Approx., 2, 303–329 (1986).

    Article  MathSciNet  Google Scholar 

  3. M. F. Barnsley, Fractals Everywhere, Dover, New York (2012).

    MATH  Google Scholar 

  4. P. Maragos, “Fractal aspects of speech signals: dimension and interpolation,” in: Proceedings ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing (Toronto, ON, Canada, May 14–17 1991, Vol. 1), IEEE Computer Society, Los Alamitos, CA (1991), pp. 417–420.

    Google Scholar 

  5. A. K. B. Chand and G. P. Kapoor, “Generalized cubic spline fractal interpolation functions,” SIAM J. Numer. Anal., 44, 655–676 (2006).

    Article  MathSciNet  Google Scholar 

  6. P. Viswanathan, A. K. B. Chand, and M. A. Navascués, “Fractal perturbation preserving fundamental shapes: bounds on the scale factors,” J. Math. Anal. Appl., 419, 804–817 (2014).

    Article  MathSciNet  Google Scholar 

  7. N. Vijender, “Bernstein fractal trigonometric approximation,” Acta Appl. Math., 159, 11–27 (2018).

    Article  MathSciNet  Google Scholar 

  8. S. Dillon and V. Drakopoulos, “On self-affine and self-similar graphs of fractal interpolation functions generated from iterated function systems,” in: Fractal Analysis: Applications in Health Sciences and Social Sciences (F. Brambila, ed.), IntechOpen, Rijeka (2017), pp. 187–205.

    Google Scholar 

  9. S-I.. Ri and V. Drakopoulos, “How are fractal interpolation functions related to several contractions?,” in: Mathematical Theorems – Boundary Value Problems and Approximations (L. Alexeyeva, ed.), IntechOpen, Rijeka (2020).

    Google Scholar 

  10. M. A. Navascués and M. V. Sebastián, “Construction of affine fractal functions close to classical interpolants,” J. Comput. Anal. Appl., 9, 271–285 (2007).

    MathSciNet  MATH  Google Scholar 

  11. N. Vijender and A. K. B. Chand, “Shape preserving affine fractal interpolation surfaces,” Nonlinear Stud., 21, 179–194 (2014).

    MathSciNet  MATH  Google Scholar 

  12. M. Ali and T. G. Clarkson, “Using linear fractal interpolation functions to compress video images,” Fractals, 2, 417–421 (1994).

    Article  Google Scholar 

  13. M. F. Barnsley, “Fractal image compression,” Notices Amer. Math. Soc., 43, 657–662 (1996).

    MathSciNet  MATH  Google Scholar 

  14. O. I. Craciunescu, S. K. Das, J. M. Poulson, and T. V. Samulski, “Three-dimensional tumor perfusion reconstruction using fractal interpolation functions,” IEEE Trans. Biom. Eng., 48, 462–473 (2001).

    Article  Google Scholar 

  15. A. E. Jacquin, “Image coding based on a fractal theory of iterated contractive image transformations,” IEEE Trans. Image Processing, 1, 18–30 (1992).

    Article  ADS  Google Scholar 

  16. M. A. Navascués and M. V. Sebastián, “Construction of affine fractal functions close to classical interpolants,” J. Comput. Anal. Appl., 9, 271–285 (2007).

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank the reviewers for their efforts toward improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Drakopoulos.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2021, Vol. 207, pp. 333-346 https://doi.org/10.4213/tmf10041.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drakopoulos, V., Vijender, N. Univariable affine fractal interpolation functions. Theor Math Phys 207, 689–700 (2021). https://doi.org/10.1134/S0040577921060015

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577921060015

Keywords

Navigation