Skip to main content
Log in

Evolution of β-catenin-independent Wnt–GSK3–mTOR signalling in regulation of energy metabolism in isoproterenol-induced cardiotoxicity model

  • Commentary
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Isoproterenol (ISO) is widely used agent to study the effects of interventions which could prevent or attenuate the development of myocardial infarction. The sequence of pathological event’s revealed that increased myocardial tissue oxygen demand and energy dysregulation exist early during Iso-induced cardiac toxicity. Later, tissue hypoxia results in increased oxidative stress, inflammation and fibrosis along with cardiac dysfunction in this model. The canonical Wnt/β-catenin pathway has been reported to directly implicate in inducing cardiomyocyte hypertrophy and remodelling. However, less is known about the role of non-canonical Wnt signalling in cardiac diseases.

Method

Certain evidences have suggested that the activation of Wnt could up-regulate key energy sensor and cell growth regulator mTOR (Mechanistic target of rapamycin) by inhibition of GSK-3β mediator.

Result

The GSK-3β could negatively influence the mTOR activity and produce energy dysregulation during stress or hypoxic conditions. This suggests that the inhibition of GSK-3β by Wnt signalling could up-regulate mTOR levels and thereby restore early myocardial tissue energy balance and prevent cardiac toxicity in rodents.

Conclusion

We hereby discuss a novel therapeutic role of the β-catenin independent, Wnt–GSK3–mTOR axis in attenuation of Iso-induced cardiotoxicity in rodents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Yue Z, Yanping L, Yueyan L, Jingjing Z, Huifang T. Wnt/β-catenin signaling mediates cardiac hypertrophy in type 4 cardiorenal syndrome. Nephrology. 2021. https://doi.org/10.1111/nep.13848.

    Article  Google Scholar 

  2. Yousefi F, Shabaninejad Z, Vakili S, Derakhshan M, Movahedpour A, Dabiri H, Ghasemi Y, Mahjoubin-Tehran M, Nikoozadeh A, Savardashtaki A, Mirzaei H. TGF-β and WNT signaling pathways in cardiac fibrosis: non-coding RNAs come into focus. Cell Commun Signal. 2020;18(1):1–6. https://doi.org/10.1186/s12964-020-00555-4.

    Article  CAS  Google Scholar 

  3. MacDonald BT, Tamai K, He X. Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17(1):9–26. https://doi.org/10.1016/j.devcel.2009.06.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Duan J, Gherghe C, Liu D, Hamlett E, Srikantha L, Rodgers L, Regan JN, Rojas M, Willis M, Leask A, Majesky M. Wnt1/βcatenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repair. EMBO J. 2012;31(2):429–42. https://doi.org/10.1038/emboj.2011.418.

    Article  CAS  PubMed  Google Scholar 

  5. Dawson K, Aflaki M, Nattel S. Role of the Wnt-Frizzled system in cardiac pathophysiology: a rapidly developing, poorly understood area with enormous potential. J Physiol. 2013;591(6):1409–32. https://doi.org/10.1113/jphysiol.2012.235382.

    Article  PubMed  Google Scholar 

  6. Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X, Yang Q, Bennett C, Harada Y, Stankunas K, Wang CY. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell. 2006;126(5):955–68. https://doi.org/10.1016/j.cell.2006.06.055.

    Article  CAS  PubMed  Google Scholar 

  7. Mak BC, Kenerson HL, Aicher LD, Barnes EA, Yeung RS. Aberrant β-catenin signaling in tuberous sclerosis. Am J Pathol. 2005;167(1):107–16. https://doi.org/10.1016/S0002-9440(10)62958-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Eldar-Finkelman H, Krebs EG. Phosphorylation of insulin receptor substrate 1 by glycogen synthase kinase 3 impairs insulin action. Proc Natl Acad Sci. 1997;94(18):9660–4. https://doi.org/10.1073/pnas.94.18.9660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang Y, Feng W, Xue W, Tan Y, Hein DW, Li XK, Cai L. Inactivation of GSK-3β by metallothionein prevents diabetes-related changes in cardiac energy metabolism, inflammation, nitrosative damage, and remodeling. Diabetes. 2009;58(6):1391–402. https://doi.org/10.2337/db08-1697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Buller CL, Loberg RD, Fan MH, Zhu Q, Park JL, Vesely E, Inoki K, Guan KL, Brosius FC III. A GSK-3/TSC2/mTOR pathway regulates glucose uptake and GLUT1 glucose transporter expression. Am J Physiol Cell Physiol. 2008;295(3):C836–43. https://doi.org/10.1152/ajpcell.00554.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Park SY, Kim D, Kee SH. Metformin-activated AMPK regulates β-catenin to reduce cell proliferation in colon carcinoma RKO cells. Oncol Lett. 2019;17(3):2695–702. https://doi.org/10.3892/ol.2019.9892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hahn-Windgassen A, Nogueira V, Chen CC, Skeen JE, Sonenberg N, Hay N. Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J Biol Chem. 2005;280(37):32081–9. https://doi.org/10.1074/jbc.M502876200.

    Article  CAS  PubMed  Google Scholar 

  13. Guertin DA, Stevens DM, Saitoh M, Kinkel S, Crosby K, Sheen JH, Mullholland DJ, Magnuson MA, Wu H, Sabatini DM. mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell. 2009;15(2):148–59. https://doi.org/10.1016/j.ccr.2008.12.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cargnello M, Tcherkezian J, Roux PP. The expanding role of mTOR in cancer cell growth and proliferation. Mutagenesis. 2015;30(2):169–76. https://doi.org/10.1093/mutage/geu045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang L, Liu Q, Li F, Qiu J, Fan H, Ma H, Zhu Y, Wu L, Han X, Yang Z, Jiang H. Apoptosis induced by PGC-1β in breast cancer cells is mediated by the mTOR pathway. Oncol Rep. 2013;30(4):1631–8. https://doi.org/10.3892/or.2013.2628.

    Article  CAS  PubMed  Google Scholar 

  16. Sato M, Dehvari N, Öberg AI, Dallner OS, Sandström AL, Olsen JM, Csikasz RI, Summers RJ, Hutchinson DS, Bengtsson T. Improving type 2 diabetes through a distinct adrenergic signaling pathway involving mTORC2 that mediates glucose uptake in skeletal muscle. Diabetes. 2014;63(12):4115–29. https://doi.org/10.2337/db14-1283.

    Article  CAS  PubMed  Google Scholar 

  17. Arsham AM, Howell JJ, Simon MC. A novel hypoxia-inducible factor-independent hypoxic response regulating mammalian target of rapamycin and its targets. J Biol Chem. 2003;278(32):29655–60. https://doi.org/10.1074/jbc.M212770200.

    Article  CAS  PubMed  Google Scholar 

  18. Koritzinsky M, Magagnin MG, van den Beucken T, Seigneuric R, Savelkouls K, Dostie J, Pyronnet S, Kaufman RJ, Weppler SA, Voncken JW, Lambin P. Gene expression during acute and prolonged hypoxia is regulated by distinct mechanisms of translational control. EMBO J. 2006;25(5):1114–25. https://doi.org/10.1038/sj.emboj.7600998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chapman AR, Adamson PD, Mills NL. Assessment and classification of patients with myocardial injury and infarction in clinical practice. Heart. 2017;103(1):10–8. https://doi.org/10.1136/heartjnl-2016-309530.

    Article  PubMed  Google Scholar 

  20. Willis BC, Salazar-Cantú A, Silva-Platas C, Fernández-Sada E, Villegas CA, Rios-Argaiz E, González-Serrano P, Sánchez LA, Guerrero-Beltrán CE, García N, Torre-Amione G. Impaired oxidative metabolism and calcium mishandling underlie cardiac dysfunction in a rat model of post-acute isoproterenol-induced cardiomyopathy. Am J Physiol Heart Circ Physiol. 2015;308(5):H467–77. https://doi.org/10.1152/ajpheart.00734.2013.

    Article  CAS  PubMed  Google Scholar 

  21. Chagoya de Sànchez V, Hernández-Muñoz R, López-Barrera F, Yañez L, Vidrio S, Suárez J, Cota-Garza MD, Aranda-Fraustro A, Cruz D. Sequential changes of energy metabolism and mitochondrial function in myocardial infarction induced by isoproterenol in rats: a long-term and integrative study. Can J Physiol Pharmacol. 1997;75(12):1300–11. https://doi.org/10.1139/y97-154.

    Article  PubMed  Google Scholar 

  22. Desrois M, Kober F, Lan C, Dalmasso C, Cole M, Clarke K, Cozzone PJ, Bernard M. Effect of isoproterenol on myocardial perfusion, function, energy metabolism and nitric oxide pathway in the rat heart–a longitudinal MR study. NMR Biomed. 2014;27(5):529–38. https://doi.org/10.1002/nbm.3088.

    Article  CAS  PubMed  Google Scholar 

  23. Malekar P, Hagenmueller M, Anyanwu A, Buss S, Streit MR, Weiss CS, Wolf D, Riffel J, Bauer A, Katus HA, Hardt SE. Wnt signaling is critical for maladaptive cardiac hypertrophy and accelerates myocardial remodeling. Hypertension. 2010;55(4):939–45. https://doi.org/10.1161/HYPERTENSIONAHA.109.141127.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors thank Mr. Parveen Garg, Chairman ISF College of Pharmacy, Moga, India for providing necessary facilities for completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaaminepreet Singh.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, S., Bagang, N., Yadav, S. et al. Evolution of β-catenin-independent Wnt–GSK3–mTOR signalling in regulation of energy metabolism in isoproterenol-induced cardiotoxicity model. Inflamm. Res. 70, 743–747 (2021). https://doi.org/10.1007/s00011-021-01477-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-021-01477-8

Keywords

Navigation