Skip to main content
Log in

Characterisation of heat dissipation from PCM based heat sink using Mach–Zehnder Interferometry

  • Original Article
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In this work, the transient thermal performance and natural convection heat transfer from a passive thermal management system based on phase change material (PCM) filled heat sink (HS-PCM) was compared with heat sink without PCM (HS) using Differential Interferometry. n-Docosane was used as the PCM and its phase change characteristics were determined. The operational time of HS-PCM over HS improved by 78%, 70% and 59% for 5669 W/m2, 11,338 W/m2 and 14,172 W/m2 respectively, corresponding to set temperature of 48 °C. The non-intrusive Mach—Zehnder interferometry technique was employed to obtain the real-time local and average heat transfer coefficient of HS and HS-PCM using Naylor’s method. The local heat transfer coefficient along the fin height was estimated from the deformation of the parallel fringes at the surface of the fins. The fringe bending in both HS and HS-PCM increased with heating due to increase in surface temperature. The lower surface temperature of HS-PCM creates smaller density gradients in the medium causing lesser bending of fringes as compared to HS case. The local heat transfer coefficient associated with inner and outer surfaces of HS and HS-PCM varied with fringe bending angle at that location. During the heating stage, the local heat transfer coefficient increased from fin base to tip for both HS and HS-PCM, with minimum values near the base and maximum at the fin tip. The average heat transfer coefficient for the inner and outer fin surfaces was low for HS-PCM as compared to HS at all heat fluxes. The present experiment is useful for studying local fin heat loss coefficient during the pre-melting, melting, post melting and cooling stages of PCM heat sinks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

\(\bar{h}\) :

Average convective heat transfer coefficient (W/m2K)

h x :

Local convective heat transfer coefficient (W/m2K)

T :

Ambient temperature (°C)

T s :

Local surface temperature (°C)

c p :

Specific heat (J/g K)

q flux :

Heat flux dissipated (W/m2)

:

Specific refractive index (m3/kg)

x * :

Dimensionless fin length

λ o :

Wavelength of light in vacuum (m)

G :

Gladstone-Dale constant (m3/kg)

H :

Enthalpy of fusion (J/g)

I :

Current (A)

L :

Length of fin (m)

P :

Absolute air pressure (Pa)

P :

Power (W)

Q :

Heat energy (W)

R :

Gas constant (J/kgK)

T :

Temperature (°C)

V :

Voltage (V)

Z :

Length of test section in direction of light beam (m)

d :

Fringe width (m)

k :

Thermal conductivity (W/mK)

m :

Mass (g)

t :

Instantaneous time (s)

x :

Local distance along fin length (m)

α :

Angle between line of constant fringe shift and surface (°)

PCM :

Phase change material

a :

Air

f :

Final

i :

Initial

l :

Liquid

m :

Melting

s :

Solid

ER:

Effectiveness ratio

HS:

Heat sink

HS-PCM:

Heat sink with PCM

MZI:

Mach-Zehnder interferometry

PCM:

Phase change material

References

  1. Nazir H, Batool M, Bolivar FJ, Isaza-ruiz M, Xu X, Vignarooban K, Phelan P, Kannan AM (2019) International Journal of Heat and Mass Transfer Recent developments in phase change materials for energy storage applications : A review. Int J Heat Mass Transf 129:491–523. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.126

    Article  Google Scholar 

  2. Pal D, Joshi YK (2000) Melting in a side heated tall enclosure by a uniformly dissipating heat source. Int J Heat Mass Transf 44:375–387

    Article  Google Scholar 

  3. Fok SC, Shen W, Tan FL (2010) Cooling of portable hand-held electronic devices using phase change materials in finned heat sinks. Int J Therm Sci 49:109–117. https://doi.org/10.1016/j.ijthermalsci.2009.06.011

    Article  Google Scholar 

  4. Kandasamy R, Wang XQ, Mujumdar AS (2007) Application of phase change materials in thermal management of electronics. Appl Therm Eng 27:2822–2832. https://doi.org/10.1016/j.applthermaleng.2006.12.013

    Article  Google Scholar 

  5. Krishnan S, Garimella SV (2016) Thermal Management of Transient Power Spikes in Electronics — Phase Change Energy Storage or Copper Heat Sinks. J Electron Packag 126:308–316. https://doi.org/10.1115/1.1772411

    Article  Google Scholar 

  6. Joseph M, Sajith V (2019) Graphene enhanced paraffin nanocomposite based hybrid cooling system for thermal management of electronics. Appl Therm Eng 163:114342. https://doi.org/10.1016/j.applthermaleng.2019.114342

    Article  Google Scholar 

  7. Kumar S, Das MK, Rath P (2016) Application of TCE-PCM based heat sinks for cooling of electronic components : A review. Renew Sustain Energy Rev 59:550–582. https://doi.org/10.1016/j.rser.2015.12.238

    Article  Google Scholar 

  8. Akhilesh R, Narasimhan A, Balaji C (2005) Method to improve geometry for heat transfer enhancement in PCM composite heat sinks. Int J Heat Mass Transf 48:2759–2770. https://doi.org/10.1016/j.ijheatmasstransfer.2005.01.032

    Article  MATH  Google Scholar 

  9. Hosseinizadeh SF, Tan FL, Moosania SM (2011) Experimental and numerical studies on performance of PCM-based heat sink with different configurations of internal fins. Appl Therm Eng 31:3827–3838. https://doi.org/10.1016/j.applthermaleng.2011.07.031

    Article  Google Scholar 

  10. Yazici MY, Avci M, Aydin O (2019) Combined e ff ects of inclination angle and fi n number on thermal performance of a PCM-based heat sink. Appl Therm Eng 159:113956. https://doi.org/10.1016/j.applthermaleng.2019.113956

    Article  Google Scholar 

  11. Setoh G, Tan FL, Fok SC (2010) Experimental studies on the use of a phase change material for cooling mobile phones. Int Commun Heat Mass Transf 37:1403–1410. https://doi.org/10.1016/j.icheatmasstransfer.2010.07.013

    Article  Google Scholar 

  12. Muhammad H, Junaid M, Giovannelli A, Irfan M, Bin T, Muhammad H, Hassan F, Arshad A (2018) Thermal management of electronics : An experimental analysis of triangular, rectangular and circular pin-fin heat sinks for various PCMs. Int J Heat Mass Transf 123:272–284. https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.044

    Article  Google Scholar 

  13. Muhammad H, Arshad A, Mansoor M, Baig W, Sajjad U (2018) Thermal performance of LHSU for electronics under steady and transient operations modes. Int J Heat Mass Transf 127:1223–1232. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.120

    Article  Google Scholar 

  14. Baby R, Balaji C (2012) Experimental investigations on phase change material based finned heat sinks for electronic equipment cooling. Int J Heat Mass Transf 55:1642–1649. https://doi.org/10.1016/j.ijheatmasstransfer.2011.11.020

    Article  Google Scholar 

  15. Fan L, Xiao Y, Zeng Y, Fang X, Wang X, Xu X, Yu Z, Hong R, Hu Y, Cen K (2013) Effects of melting temperature and the presence of internal fins on the performance of a phase change material ( PCM ) -based heat sink. Int J Therm Sci 70:114–126. https://doi.org/10.1016/j.ijthermalsci.2013.03.015

    Article  Google Scholar 

  16. Wu W, Zhang G, Ke X, Yang X, Wang Z, Liu C (2015) Preparation and thermal conductivity enhancement of composite phase change materials for electronic thermal management, Energy Convers. Manag 101:278–284. https://doi.org/10.1016/j.enconman.2015.05.050

    Article  Google Scholar 

  17. Wang X, Mujumdar AS, Yap C (2007) Effect of orientation for phase change material ( PCM ) -based heat sinks for transient thermal management of electric components. Int Comm Heat Mass Transfer 34:801–808. https://doi.org/10.1016/j.icheatmasstransfer.2007.03.008

    Article  Google Scholar 

  18. Lamberg P, Sir K (2003) Approximate analytical model for solidification in a finite PCM storage with internal fins. Appl Math Modelling 27:491–513. https://doi.org/10.1016/S0307-904X(03)00080-5

    Article  MATH  Google Scholar 

  19. Nayak KC, Saha SK, Srinivasan K, Dutta P (2006) A numerical model for heat sinks with phase change materials and thermal conductivity enhancers. Int J Heat Mass Transf 49:1833–1844. https://doi.org/10.1016/j.ijheatmasstransfer.2005.10.039

    Article  MATH  Google Scholar 

  20. Khattak Z, Muhammad H (2019) Air cooled heat sink geometries subjected to forced flow : A critical review. Int J Heat Mass Transf 130:141–161. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.048

    Article  Google Scholar 

  21. Yoo D, Joshi YK (2004) Energy Efficient Thermal Management of Electronic Components Using Solid – Liquid Phase Change Materials. IEEE Trans Device Mater Reliab 4:641–649

    Article  Google Scholar 

  22. Sahoo SK, Das MK, Rath P (2018) Hybrid Cooling System for Electronics Equipment during Power Surge Operation, IEEE Trans. Components. Packag Manuf Technol 8:416–426. https://doi.org/10.1109/TCPMT.2017.2756919

    Article  Google Scholar 

  23. Saha SK, Dutta P (2012) Thermal management of electronics using PCM-based heat sink subjected to cyclic heat load. IEEE Trans. Components. Packag Manuf Technol 2:464–473. https://doi.org/10.1109/TCPMT.2011.2180021

    Article  Google Scholar 

  24. Saha SK, Srinivasan K, Dutta P (2008) Studies on Optimum Distribution of Fins in Heat Sinks Filled With Phase Change Materials. J Heat Transfer 130:034505. https://doi.org/10.1002/jlac.18771880102

    Article  Google Scholar 

  25. Newport D, Sobhanand CB, Garvey J (2008) Digital interferometry : techniques and trends for fluid measurement. Heat Mass Transf 44:535–546. https://doi.org/10.1007/s00231-007-0267-2

    Article  Google Scholar 

  26. Goharkhah M, Ashjaee M, Madanipour K (2009) Investigation of the accuracy of different methods of interferogram analysis for calculation of local free convection heat transfer coefficient on axisymmetric objects. Exp Therm Fluid Sci 33:1188–1196. https://doi.org/10.1016/j.expthermflusci.2009.08.004

    Article  Google Scholar 

  27. Goldstein RJ, Eckert ERG (1960) The Steady and Transient Free Convection Boundary Layer on a Uniformly Heated Vertical Plate. Int J Heat Mass Transf 1:208–218

    Article  Google Scholar 

  28. Sajith V, Balakrishna C, Sobhan P (2012) Characterization of Heat Dissipation from a Microprocessor Chip Using Digital Interferometry. IEEE Trans. Components. Packag Manuf Technol 2:1298–1306. https://doi.org/10.1109/TCPMT.2012.2199756

    Article  Google Scholar 

  29. Bhavnani SH, Bergles AE (1991) Natural convection heat transfer from sinusoidal wavy surfaces. Warme- Und Stofffubertragung 349:341–349

    Article  Google Scholar 

  30. Kwak CE, Song TH (2000) Natural convection around horizontal downward-facing plate with rectangular grooves: experiments and numerical simulations 43:825–838

    Google Scholar 

  31. Naylor D, Poulad EM, Oosthuizen PH (2010) Measurement of Time-averaged Turbulent Free Convection using Laser Interferometry, Proc. 14th Int. Heat Transf. Conf. Washington, DC, August 8–13; Am Soc Mech Eng Washington, DC. 1–9

  32. Nimdeo YM, Srivastava A (2018) Understanding the temperature dependence of thermo-physical properties of nano fl uid suspensions using non-intrusive dynamic measurements. Exp Therm Fluid Sci 94:109–121. https://doi.org/10.1016/j.expthermflusci.2018.01.019

    Article  Google Scholar 

  33. Sobhan CB, VenkateshanK SP, Seetharamu N (1990) Experimental studies on steady free convection heat transfer from fins and fin arrays. Warme- Und Stofffubertragung 352:345–352

    Article  Google Scholar 

  34. Sobhan CB, Venkateshan SP, Seetharamu KN (1989) Experimental analysis of unsteady free convection heat transfer from horizontal fin arrays. Warme- Und Stofffubertragung 160:155–160

    Article  Google Scholar 

  35. Sajith V, Haridas D, Sobhan CB, Reddy GRC (2011) Convective heat transfer studies in macro and mini channels using digital interferometry. Int J Therm Sci 50:239–249. https://doi.org/10.1016/j.ijthermalsci.2010.04.005

    Article  Google Scholar 

  36. Divya H, Reddy GR, Balakrishna C (2015) Digital Interferometric Measurement of Forced Convection Fields in Compact Channels. UOPT 9:9–34. https://doi.org/10.1080/15599612.2014.916370

    Article  Google Scholar 

  37. Rao SS, Srivastava A (2016) Interferometric study of natural convection in a differentially-heated cavity with Al 2 O 3 – water based dilute nanofluids. Int J Heat Mass Transf 92:1128–1142. https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.074

    Article  Google Scholar 

  38. Vikas D, Basu S, Dutta P (2012) In-situ measurements of concentration and temperature during transient solidification of aqueous solution of ammonium chloride using laser interferometry. Int J Heat Mass Transf 55:2022–2034. https://doi.org/10.1016/j.ijheatmasstransfer.2011.12.002

    Article  Google Scholar 

  39. Naylor D, Duarte N (1999) Direct Temperature Gradient Measurement using Interferometry. Exp Heat Transf 12:279–294

    Article  Google Scholar 

  40. Naylor D (2003) Recent developments in the measurement of convective heat transfer rates by laser interferometry. Int J Heat Fluid Flow 24:345–355. https://doi.org/10.1016/S0142-727X(03)00021-3

    Article  Google Scholar 

  41. Harish S, Thomas S, Sajith V (2013) Experimental investigation of heat transfer on microstructured surfaces using digital interferometry. Proc. 22nd Natl. 11th Int. ISHMT-ASME Heat Mass Transf Conf

  42. Churchill SW, Chu HHS (1975) Correlating Equations for Laminar and Turbulent Free Convection from a Vertical Plate. Int J Heat Mass Transf 18:1323–1329

    Article  Google Scholar 

  43. Taylor JR Introduction to error analysis 2ed.pdf, (n.d.)

  44. Kamkari B, Groulx D (2018) Experimental investigation of melting behaviour of phase change material in fi nned rectangular enclosures under di ff erent inclination angles. Exp Therm Fluid Sci 97:94–108. https://doi.org/10.1016/j.expthermflusci.2018.04.007

    Article  Google Scholar 

  45. Joneidi MH, Hosseini MJ, Ranjbar AA, Bahrampoury R (2017) Experimental investigation of phase change in a cavity for varying heat fl ux and inclination angles. Exp Therm Fluid Sci 88:594–607. https://doi.org/10.1016/j.expthermflusci.2017.07.017

    Article  Google Scholar 

  46. Zulk S, Koneke T, Mertens A (2016) Analytical modeling of plate fin heat sinks for natural convection cooling in power electronics, 2016 IEEE Vehicle Power and Propulsion Conference (VPPC) Hangzhou 1–6 https://doi.org/10.1109/VPPC.2016.7791618

  47. Bar-Cohen A, Iyengar M, Kraus AD (2003) Design of Optimum Plate-Fin Natural Convective Heat Sinks. ASME J Electron Packag 125(2):208–216. https://doi.org/10.1115/1.1568361

    Article  Google Scholar 

  48. Ghahfarokhi PS, Kallaste A, Vaimann T, Rassolkin A, Belahcen A (2018) Determination of natural convection heat transfer coefficient over the fin side of a coil system. Int J Heat Mass Transf 126:677–682. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.071

    Article  Google Scholar 

  49. Tari I, Mehrtash M (2013) Natural convection heat transfer from horizontal and slightly inclined plate-fin heat sinks. Appl Therm Eng 61(2):728–736. https://doi.org/10.1016/j.applthermaleng.2013.09.003

    Article  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Sajith.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joseph, M., Antony, V. & Sajith, V. Characterisation of heat dissipation from PCM based heat sink using Mach–Zehnder Interferometry. Heat Mass Transfer 58, 171–193 (2022). https://doi.org/10.1007/s00231-021-03101-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-021-03101-1

Navigation