Skip to main content

Advertisement

Log in

Minibatch stochastic subgradient-based projection algorithms for feasibility problems with convex inequalities

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper we consider convex feasibility problems where the feasible set is given as the intersection of a collection of closed convex sets. We assume that each set is specified algebraically as a convex inequality, where the associated convex function is general (possibly non-differentiable). For finding a point satisfying all the convex inequalities we design and analyze random projection algorithms using special subgradient iterations and extrapolated stepsizes. Moreover, the iterate updates are performed based on parallel random observations of several constraint components. For these minibatch stochastic subgradient-based projection methods we prove sublinear convergence results and, under some linear regularity condition for the functional constraints, we prove linear convergence rates. We also derive sufficient conditions under which these rates depend explicitly on the minibatch size. To the best of our knowledge, this work is the first deriving conditions that show theoretically when minibatch stochastic subgradient-based projection updates have a better complexity than their single-sample variants when parallel computing is used to implement the minibatch. Numerical results also show a better performance of our minibatch scheme over its non-minibatch counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alamo, T., Tempo, R., Camacho, E.F.: Randomized strategies for probabilistic solutions of uncertain feasibility and optimization problems. IEEE Trans. Autom. Control 54(11), 2545–2559 (2009)

    Article  MathSciNet  Google Scholar 

  2. Bauschke, H.H.: Projection algorithms: Results and open problems. In: Butnariu, D., Censor, Y., Reich, S. (eds.) Inherently Parallel Algorithms in Feasibility and Optimization and their Applications, pp. 11–22. Elsevier, Amsterdam (2001)

    Chapter  Google Scholar 

  3. Bauschke, H.H., Combettes, P.L., Luke, D.R.: Hybrid projection-reflection method for phase retrieval. J. Opt. Soc. Am. 20(6), 1025–1034 (2003)

    Article  Google Scholar 

  4. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in Systems and Control Theory. SIAM, Philadelphia (1994)

    Book  Google Scholar 

  5. Bregman, L.M.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. Zh. Vychisl. Mat. Mat. Fiz. 7, 620–631 (1967)

    MathSciNet  MATH  Google Scholar 

  6. Burke, J.V., Ferris, M.C.: Weak sharp minima in mathematical programming. SIAM J. Control Optim. 31(6), 1340–1359 (1993)

    Article  MathSciNet  Google Scholar 

  7. Blatt, D., Hero, A.: Energy based sensor network source localization via projection onto convex sets. IEEE Trans. Signal Process. 54(9), 3614–3619 (2006)

    Article  Google Scholar 

  8. Calafiore, G., Polyak, B.T.: Stochastic algorithms for exact and approximate feasibility of robust LMI’s. IEEE Trans. Autom. Control 40(11), 1755–1759 (2001)

    Article  MathSciNet  Google Scholar 

  9. Combettes, P.L.: Convex set theoretic image recovery by extrapolated iterations of parallel subgradient projections. IEEE Trans. Image Process. 6(4), 493–506 (1997)

    Article  Google Scholar 

  10. Combettes, P.L.: Hilbertian convex feasibility problem: convergence of projection methods. Appl. Math. Optim. 35, 311–330 (1997)

    Article  MathSciNet  Google Scholar 

  11. Deutsch, F.: Rate of convergence of the method of alternating projections. In: Brosowski, B., Deutsch, F. (eds.) Parametric Optimization and Approximation, pp. 96–107. Birkhauser, Basel (1983)

    Google Scholar 

  12. Deutsch, F., Hundal, H.: The rate of convergence for the cyclic projections algorithm I: Angles between convex sets. J. Approx. Theory 142, 36–55 (2006)

    Article  MathSciNet  Google Scholar 

  13. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, Berlin (2003)

    MATH  Google Scholar 

  14. Fercoq, O., Alacaoglu, A., Necoara, I., Cevher, V.: Almost surely constrained convex optimization. Presented at the (2019)

  15. Gubin, L.G., Polyak, B.T., Raik, E.V.: The method of projections for finding the common point of convex sets. Comput. Math. Math. Phys. 7(6), 1211–1228 (1967)

    Article  Google Scholar 

  16. Guler, O., Hoffman, A., Rothblum, U.: Approximations to solutions to systems of linear inequalities. DIMACS technical report, DIMACS Center for Discrete Mathematics and Theoretical Computer Science (1992)

  17. Halperin, I.: The product of projection operators. Acta Sci. Math. 23, 96–99 (1962)

    MathSciNet  MATH  Google Scholar 

  18. Kundu, A., Bach, F., Bhattacharrya, C.: Convex optimization over intersection of simple sets: improved convergence rate guarantees via an exact penalty approach. In: International Conference on Artificial Intelligence and Statistics, (2018)

  19. Kaczmarz, S.: Angenaherte Auflosung von Systemen linearer Gleichungen. Bull. Acad. Sci. Pologne A35, 355–357 (1937)

    MATH  Google Scholar 

  20. Lewis, A., Pang, J.: Error bounds for convex inequality systems. In: Crouzeix, J.P., Martinez-Legaz, J.E., Volle, M. (eds.) Generalized Convexity, Generalized Monotonicity: Recent Results. Nonconvex Optimization and Its Applications, pp. 75–110. Springer, Berlin (1998)

    Chapter  Google Scholar 

  21. Liew, A., Yan, H., Law, N.: POCS-based blocking artifacts suppression using a smoothness constraint set with explicit region modeling. IEEE Trans. Circ. Syst. Video Tech. 15, 795–800 (2005)

    Article  Google Scholar 

  22. Lacoste-Julien, S., Schmidt, M., Bach, F.: A simpler approach to obtaining an \(O(1/t)\) convergence rate for the projected stochastic subgradient method. CoRR, abs/1212.2002, (2012)

  23. Motzkin, T.S., Shoenberg, I.: The relaxation method for linear inequalities. Can. J. Math. 6, 393–404 (1954)

    Article  MathSciNet  Google Scholar 

  24. Necoara, I., Richtarik, P., Patrascu, A.: Randomized projection methods for convex feasibility problems. SIAM J. Optim. 29(4), 2814–2852 (2019)

    Article  MathSciNet  Google Scholar 

  25. Necoara, I.: Faster randomized block Kaczmarz algorithms. SIAM J. Matrix Anal. Appl. 40(4), 1425–1452 (2019)

    Article  MathSciNet  Google Scholar 

  26. Nedic, A.: Random projection algorithms for convex set intersection problems. In: Proceedings of IEEE Conference on Decision and Control, pp. 7655–7660, (2010)

  27. Nedic, A.: Random algorithms for convex minimization problems. Math. Progr. 129(2), 225–273 (2011)

    Article  MathSciNet  Google Scholar 

  28. Nemirovski, A., Juditsky, A., Lan, G., Shapiro, A.: Robust stochastic approximation approach to stochastic programming. SIAM J. Optim. 19(4), 1574–1609 (2009)

    Article  MathSciNet  Google Scholar 

  29. Nesterov, Yu., Nemirovskii, A.: Interior-Point Polynomial Algorithms in Convex Programming. SIAM, Philadelphia (1994)

    Book  Google Scholar 

  30. Polyak, B.T.: Minimization of unsmooth functionals. Comput. Math. Math. Phys. 9, 14–29 (1969)

    Article  Google Scholar 

  31. Polyak, B.T.: Introduction to Optimization. Optimization Software, New York (1987)

    MATH  Google Scholar 

  32. Polyak, B.T.: Random algorithms for solving convex inequalities. In: Butnariu, D., Censor, Y., Reich, S. (eds.) Inherently Parallel Algorithms in Feasibility and Optimization and their Applications, pp. 409–422. Elsevier, Amsterdam (2001)

    Chapter  Google Scholar 

  33. Patrascu, A., Necoara, I.: Nonasymptotic convergence of stochastic proximal point algorithms for constrained convex optimization. J. Mach. Learn. Res. 18(198), 1–42 (2018)

    MATH  Google Scholar 

  34. Peng, X., Li, L., Wang, F.: Accelerating minibatch stochastic gradient descent using typicality sampling. IEEE Trans. Neural Networks Learn. Syst. (2019). https://doi.org/10.1109/tnnls.2019.2957003

    Article  Google Scholar 

  35. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  Google Scholar 

  36. Stark, H., Yang, Y.: Vector space projections: A numerical approach to signal and image processing. Wiley-Interscience, Neural Nets and Optics (1998)

Download references

Acknowledgements

The research leading to these results has received funding from the NO Grants 2014–2021, under project ELO-Hyp, Contract No. 24/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ion Necoara.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Necoara, I., Nedić, A. Minibatch stochastic subgradient-based projection algorithms for feasibility problems with convex inequalities. Comput Optim Appl 80, 121–152 (2021). https://doi.org/10.1007/s10589-021-00294-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-021-00294-3

Keywords

Mathematics Subject Classification

Navigation