Skip to main content
Log in

High-Throughput Free Surface Electrospinning Using Solution Reservoirs with Different Depths and Its Preparation Mechanism Study

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

For obtaining high-throughput production of nanofibers, the preparation mechanism of a self-made spherical section free surface electrospinning (SSFSE) using solution reservoirs with different depths was studied. The effects of the solution reservoir depth on the SSFSE process as well as the quality and yield of polyacrylonitrile (PAN) nanofibers were investigated experimentally using high-speed camera, precise electronic balance and scanning electron microscopy. Furthermore, the results were analyzed theoretically by response surface methodology (RSM) and numerical simulation. The values predicted by the established RSM model and the electric field results obtained by Maxwell 3D were all consistent with the experimental data, which showed that the different depths of the solution reservoir had little effect on the quality of PAN nanofibers, but had great effects on the yields of them. The PAN nanofibers prepared have the best quality and the highest yields when the maximum depth of the solution reservoir was 4.29 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Huerta RR, Silva EK, El-Bialy T, Saldaña MDA. Clove essential oil emulsion-filled cellulose nanofiber hydrogel produced by high-intensity ultrasound technology for tissue engineering applications. Ultrason Sonochem. 2020;64:104845.

    Article  CAS  Google Scholar 

  2. Kang J, Hwang JY, Huh M, Yun SI. Porous poly(3-hydroxybutyrate) scaffolds prepared by non-solvent-induced phase separation for tissue engineering. Macromol Res. 2020;28:835–43.

    Article  CAS  Google Scholar 

  3. Avci H, Akkulak E, Gergeroglu H, Ghorbanpoor H, Uysal O, Sariboyaci AE, Demir B, Soykan MN, Pat S, Mohammadigharehbagh R, Ozel C, Cabuk A, Guzel FD. Flexible poly(styrene-ethylene-butadiene-styrene) hybrid nanofibers for bioengineering and water filtration applications. J Appl Polym Sci2020;137:49184.

    Article  CAS  Google Scholar 

  4. Yin J, Xu L. Batch preparation of electrospun polycaprolactone/chitosan/aloe vera blended nanofiber membranes for novel wound dressing. Int J Biol Macromol. 2020;160:352–63.

    Article  CAS  Google Scholar 

  5. Liu H, Zuo B. Structure and sound absorption properties of spiral vane electrospun PVA/PEO nanofiber membranes. Appl Sci. 2018;8:296.

    Article  Google Scholar 

  6. Shao P, Niu B, Chen H, Sun P. Fabrication and characterization of tea polyphenols loaded pullulan-CMC electrospun nanofiber for fruit preservation. Int J Biol Macromol. 2018;107:1908–14.

    Article  CAS  Google Scholar 

  7. Wu Y, Kelly SH, Sanchez-Perez L, Sampson J, Collier JH. Comparative study of α-helical and β-sheet self-assembled peptide nanofiber vaccine platforms: Influence of integrated T-cell epitopes. Biomater Sci. 2020;8:3522–35.

    Article  CAS  Google Scholar 

  8. Cheng T, Li S, Xu L, Ahmed A. Controllable preparation and formation mechanism of nanofiber membranes with large pore sizes using a modified electrospinning. Mater Des. 2019;178:107867.

    Article  Google Scholar 

  9. Wang Y, Cheng T, Xu L. Preparation, characterization, and adsorption application of poly (lactic acid)/tea polyphenols porous composite nanofiber membranes. J Text Inst. 2019;110:1760–66.

    Article  CAS  Google Scholar 

  10. Cao X, Deng J, Pan K. Electrospinning janus type CoOx/C nanofibers as electrocatalysts for oxygen reduction reaction. Adv Fiber Mater. 2020;2:85–92.

    Article  Google Scholar 

  11. Varabhas JS, Chase GG, Reneker DH. Electrospun nanofibers from a porous hollow tube. Polymer. 2008;49:4226–9.

    Article  CAS  Google Scholar 

  12. Liu Y, Guo L. Homogeneous field intensity control during multi-needle electrospinning via finite element analysis and simulation. J Nanosci Nanotechnol. 2013;13:843–7.

    Article  CAS  Google Scholar 

  13. Liu SL, Huang YY, Zhang HD, Sun B, Zhang JC, Long YZ. Needleless electrospinning for large scale production of ultrathin polymer fibres. Mater Res Innov. 2014;18:833–7.

    Google Scholar 

  14. Jiang G, Johnson L, Xie S. Investigations into the mechanisms of electrohydrodynamic instability in free surface electrospinning. Open Phys. 2019;17:313–9.

    Article  CAS  Google Scholar 

  15. Jun-Jye N, Pitt S. Rotating-disk electrospinning: needleless electrospinning of poly(caprolactone), poly(lactic acid) and poly(vinyl alcohol) nanofiber mats with controlled morphology. J Polym Res. 2018;25:155.

    Article  Google Scholar 

  16. Tan HL, Putrim MKS, Idris SS, Hartikainen N, Abu Bakar NF, Keirouz A, Radacsi N. High-throughput fabrication of carbonized electrospun polyacrylonitrile/ poly(acrylic acid) nanofibers with additives for enhanced electrochemical sensing. J Appl Polym Sci. 2020;137:e49341.

    Article  Google Scholar 

  17. Chen RX, Wan YQ, Si N, He JH, Ko F, Wang SQ. Bubble rupture in bubble electrospinning. Therm Sci. 2015;19:1141–9.

    Article  Google Scholar 

  18. Forward KM, Rutledge GC. Free surface electrospinning from a wire electrode. Chem Eng J. 2012;183:492–503.

    Article  CAS  Google Scholar 

  19. Dosunmu OO, Chase GG, Kataphinan W, Reneker DH. Electrospinning of polymer nanofibres from multiple jets on a porous tubular surface. Nanotechnology. 2006;17:1123.

    Article  CAS  Google Scholar 

  20. Tang S, Zeng Y, Wang X. Splashing needleless electrospinning of nanofibers. Polym Eng Sci. 2010;50:2252–7.

    Article  CAS  Google Scholar 

  21. Thoppey NM, Bochinski JR, Clarke LI, Gorga RE. Edge electrospinning for high throughput production of quality nanofibers. Nanotechnology. 2011;22:345301.

    Article  CAS  Google Scholar 

  22. Wang X, Xu W. Effect of experimental parameters on needleless electrospinning from a conical wire coil. J Appl Polym Sci. 2012;123:3703–9.

    Article  CAS  Google Scholar 

  23. Krishnamoorthy T, Tang MZ, Verma A, Nair AS, Pliszka D, Mhaisalkar SG, Ramakrishna S. A facile route to vertically aligned electrospun SnO2 nanowires on a transparent conducting oxide substrate for dye-sensitized solar cells. J Mater Chem. 2012;22:2166–72.

    Article  CAS  Google Scholar 

  24. Niu H, Wang X, Lin T. Needleless electrospinning: influences of fibre generator geometry. J Text Inst. 2012;103:787–94.

    Article  CAS  Google Scholar 

  25. He J, Qi K, Wang L, Zhou Y, Liu R, Cui S. Combined application of multi-nozzle air-jet electrospinning and airflow twisting for the efficient preparation of continuous twisted nanofiber yarn. Fibers Polym. 2015;16:1319–26.

    Article  CAS  Google Scholar 

  26. Moon S, Gil M, Lee KJ. Syringeles electrospinning toward versatile fabrication of nanofiber web. Sci Rep. 2017;7:41424.

    Article  Google Scholar 

  27. Shao Z, Yu L, Xu L, Wang M. High-throughput fabrication of quality nanofibers using a modified free surface electrospinning. Nanoscale Res Lett. 2017;12:470.

    Article  Google Scholar 

  28. Rosenthal T, Weller JM, Chan CK. Needleless electrospinning for high throughput production of Li7La3Zr2O12 solid electrolyte nanofibers. Ind Eng Chem Res. 2019;58:17399–405.

    Article  CAS  Google Scholar 

  29. Shi H, Niu P, Ning P, Wang S. A new method for preparing needle-free cylindrical nozzle nanofibers. J Ind Text. 2020. https://doi.org/10.1177/1528083720907058.

    Article  Google Scholar 

  30. Yu L, Shao Z, Xu L, Wang M. High throughput preparation of aligned nanofibers using an improved bubble electrospinning .Polymers. 2017;9:658.

    Article  Google Scholar 

  31. Fang Y, Xu L, Wang M. High-throughput preparation of silk fibroin nanofibers by modified bubble-electrospinning. Nanomaterials. 2018;8:471.

    Article  Google Scholar 

  32. Fang Y, Xu L. Four self-made free surface electrospinning devices for high throughput preparation of high-quality nanofibers. Beilstein J Nanotechnol. 2019;10:2261–74.

    Article  CAS  Google Scholar 

  33. Ahmed A, Yin J, Xu L, Khan F. High-throughput free surface electrospinning using solution reservoirs with different radii and its preparation mechanism study. J Mater Res Technol. 2020;9:9059–72.

    Article  CAS  Google Scholar 

  34. Liang Z, Deng Z, Qin X, Liang W. Theoretical analysis and of three dimensional free surface of electrospinning. J King Saud Univ Sci. 2019;31:430–63.

    Article  Google Scholar 

  35. Zhao JH, Sun ZY, Shao ZB, Xu L. Effect of surface-active agent on morphology and properties of electrospun PVA nanofibers. Fiber Polym. 2016;17:896–901.

    Article  CAS  Google Scholar 

  36. Banikazemi S, Rezaei M, Rezaei P, Babaie A, Alireza EA. Preparation of electrospun shape memory polyurethane fibers in optimized electrospinning conditions via response surface methodology. Polym Adv Technol. 2020;31:2199–208.

    CAS  Google Scholar 

  37. Xie S, Zeng Y. Effects of electric field on multi-needle electrospinning: experiment and simulation study. Ind Eng Chem Res. 2012;51:5336–45.

    Article  CAS  Google Scholar 

  38. Ipakchi H, Masoud Rezadoust A, Esfandeh M, Mirshekar H. Modeling and optimization of electrospinning conditions of PVB nanofiber by RSM and PSO-LSSVM models for improved interlaminar fracture toughness of laminated composites. J Compos Mater. 2020;54:363–78.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work is supported financially by National Natural Science Foundation of China (Grant No. 11672198), Jiangsu Higher Education Institutions of China (Grant No. 20KJA130001), Six Talent Peaks Project of Jiangsu Province (Grant No. GDZB-050), Science and Technology Guiding Project of China National Textile and Apparel Council (2020013), and PAPD (A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Xu.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, J., Ahmed, A. & Xu, L. High-Throughput Free Surface Electrospinning Using Solution Reservoirs with Different Depths and Its Preparation Mechanism Study. Adv. Fiber Mater. 3, 251–264 (2021). https://doi.org/10.1007/s42765-021-00078-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-021-00078-8

Keywords

Navigation