Skip to main content
Log in

Explicit analysis of large transformation of a Timoshenko beam: post-buckling solution, bifurcation, and catastrophes

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper exposes full analytical solutions of a plane, quasi-static but large transformation of a Timoshenko beam. The problem is first re-formulated in the form of a Cauchy initial value problem where load (force and moment) is prescribed at one end and kinematics (translation, rotation) at the other one. With such formalism, solutions are explicit for any load and existence, and unicity and regularity of the solution of the problem are proven. Therefore, analytical post-buckling solutions were found with different regimes driven explicitly by two invariants of the problem. The paper presents how these solutions of a Cauchy initial value problem may help tackle (i) boundary problems, where physical quantities (of load, position or section orientation) are prescribed at both ends and (ii) problems of quasi-static instabilities. In particular, several problems of bifurcation are explicitly formulated in case of buckling or catastrophe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Han, S.M., Benaroya, H., Wei, T.: Dynamics of transversely vibrating beams using four engineering theories. J. Sound Vib. 225(5), 935–988 (1999)

    Article  Google Scholar 

  2. Dell’Isola, F., Corte, A Della, Greco, L., Luongo, A.: Plane bias extension test for a continuum with two inextensible families of fibers: a variational treatment with Lagrange multipliers and a perturbation solution. Int. J. Solids Struct. 81, 1–12 (2016)

    Article  Google Scholar 

  3. Timoshenko, S.P.: On the transverse vibrations of bars of uniform cross-section. Lond. Edinb. Dublin Philos. Mag. J. Sci. 43(253), 125–131 (1922)

    Article  Google Scholar 

  4. Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. Courier Corporation, Chelmsford (2009)

    Google Scholar 

  5. Elishakoff, I.E.: Handbook on Timoshenko-Ehrenfest beam and Uflyand-Mindlin Plate Theories. World Scientific, Singapore (2019)

    Book  Google Scholar 

  6. Mohyeddin, A., Fereidoon, A.: An analytical solution for the large deflection problem of Timoshenko beams under three-point bending. Int. J. Mech. Sci. 78, 135–139 (2014)

    Article  Google Scholar 

  7. Li, D.-K., Li, X.-F.: Large deflection and rotation of Timoshenko beams with frictional end supports under three-point bending. C. R. Méc. 344(8), 556–568 (2016)

    Article  Google Scholar 

  8. Cosserat, E., Cosserat, F.: Théorie des corps déformables, A. Hermann et fils (1909)

  9. Eugster, S.R., Harsch, J.: A variational formulation of classical nonlinear beam theories. In: Abali, B.E., Giorgio, I. (eds.) Developments and Novel Approaches in Nonlinear Solid Body Mechanics, pp. 95–121. Springer International Publishing, Berlin (2020)

    Chapter  Google Scholar 

  10. Antman, S.: Nonlinear Problems of Elasticity, Volume 107 of Applied Mathematical Sciences, 2nd edn, p. 1. Springer, New York (2005)

    Google Scholar 

  11. Reissner, E.: On one-dimensional finite-strain beam theory: the plane problem. Zeitschrift für angewandte Mathematik und Physik ZAMP 23(5), 795–804 (1972)

    Article  Google Scholar 

  12. Simo, J.C.: A finite strain beam formulation. The three-dimensional dynamic problem. I. Comput. Methods Appl. Mech. Eng. 49(1), 55–70 (1985)

    Article  Google Scholar 

  13. Rakotomanana, L.: Eléments de dynamique des solides et structures déformables, PPUR Presses polytechniques (2009)

  14. Le Marrec, L., Lerbet, J., Rakotomanana, L.R.: Vibration of a Timoshenko beam supporting arbitrary large pre-deformation. Acta Mech. 229(1), 109–132 (2018)

    Article  MathSciNet  Google Scholar 

  15. Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  16. Reissner, E.: Some remarks on the problem of column buckling. Ingenieur-Archiv 52(1–2), 115–119 (1982)

    Article  Google Scholar 

  17. Cedolin, L., et al.: Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories. World Scientific, Singapore (2010)

    MATH  Google Scholar 

  18. Bažant, Z.P.: A correlation study of formulations of incremental deformation and stability of continuous bodies. J. Appl. Mech. 38(4), 919–928 (1971)

    Article  Google Scholar 

  19. Dell’Isola, F., Corte, A. Della, Battista, A., Barchiesi, E.: Extensible beam models in large deformation under distributed loading: A numerical study on multiplicity of solutions. In: Higher Gradient Materials and Related Generalized Continua, pp. 19–41. Springer (2019)

  20. Corte, A.D., Battista, A., Dell’Isola, F., Seppecher, P.: Large deformations of Timoshenko and Euler beams under distributed load. Zeitschrift für Angewandte Mathematik und Physik ZAMP 70(2), 52 (2019)

    Article  MathSciNet  Google Scholar 

  21. Meyer, K.R.: Jacobi elliptic functions from a dynamical systems point of view. The American Mathematical Monthly 108(8), 729–737 (2001)

    Article  MathSciNet  Google Scholar 

  22. Baker, T.E., Bill, A.: Jacobi elliptic functions and the complete solution to the bead on the hoop problem. Am. J. Phys. 80(6), 506–514 (2012)

    Article  Google Scholar 

  23. Olver, F.W., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions. Hardback and CD-ROM. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  24. Ohtsuki, A.: An analysis of large deflection in a symmetrical three-point bending of beam. Bull. JSME 29(253), 1988–1995 (1986)

    Article  Google Scholar 

  25. Chucheepsakul, S., Wang, C.M., He, X.Q., Monprapussorn, T.: Double curvature bending of variable-arc-length elasticas. J. Appl. Mech. 66(1), 87–94 (1999)

    Article  Google Scholar 

  26. Magnusson, A., Ristinmaa, M., Ljung, C.: Behaviour of the extensible elastica solution. Int. J. Solids Struct. 38(46–47), 8441–8457 (2001)

    Article  Google Scholar 

  27. Humer, A.: Exact solutions for the buckling and postbuckling of shear-deformable beams. Acta Mech. 224(7), 1493–1525 (2013)

    Article  MathSciNet  Google Scholar 

  28. Humer, A., Pechstein, A.S.: Exact solutions for the buckling and postbuckling of a shear-deformable cantilever subjected to a follower force. Acta Mech. 230(11), 3889–3907 (2019)

    Article  MathSciNet  Google Scholar 

  29. Batista, M.: Large deflections of shear-deformable cantilever beam subject to a tip follower force. Int. J. Mech. Sci. 75, 388–395 (2013)

    Article  Google Scholar 

  30. Batista, M.: Analytical treatment of equilibrium configurations of cantilever under terminal loads using Jacobi elliptical functions. Int. J. Solids Struct. 51(13), 2308–2326 (2014)

    Article  Google Scholar 

  31. Batista, M.: A closed-form solution for Reissner planar finite-strain beam using Jacobi elliptic functions. Int. J. Solids Struct. 87, 153–166 (2016)

    Article  Google Scholar 

  32. Timoshenko, S.P.: Lxvi. On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Lond. Edinb. Dublin Philos. Mag. J. Sci. 41(245), 744–746 (1921)

    Article  Google Scholar 

  33. Le Marrec, L., Zhang, D., Ostoja-Starzewski, M.: Three-dimensional vibrations of a helically wound cable modeled as a Timoshenko rod. Acta Mech. 229(2), 677–695 (2018)

    Article  MathSciNet  Google Scholar 

  34. Forgit, C., Lemoine, B., Le Marrec, L., Rakotomanana, L.: A Timoshenko-like model for the study of three-dimensional vibrations of an elastic ring of general cross-section. Acta Mech. 227(9), 2543–2575 (2016)

    Article  MathSciNet  Google Scholar 

  35. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. Tata McGraw-Hill Education, New York (1955)

    MATH  Google Scholar 

  36. Thom, R.: Structural Stability and Morphogenesis. CRC Press, Boca Raton (2018)

    Google Scholar 

  37. Poston, T., Stewart, I.: Catastrophe Theory and Its Applications. Courier Corporation, Chelmsford (2014)

    MATH  Google Scholar 

  38. Golubitsky, M.: An introduction to catastrophe theory and its applications. SIAM Rev. 20(2), 352–387 (1978)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from the Walid Joumblatt Foundation For University Studies and the Henri Lebesgue Center. The authors gratefully acknowledge the support of IRMAR - CNRS UMR 6625 for providing financial support. The authors are very grateful to Professor Lalaonirina Rakotomanana for the careful and thoughtful comments on the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwan Hariz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hariz, M., Le Marrec, L. & Lerbet, J. Explicit analysis of large transformation of a Timoshenko beam: post-buckling solution, bifurcation, and catastrophes. Acta Mech 232, 3565–3589 (2021). https://doi.org/10.1007/s00707-021-02993-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-02993-8

Navigation