Skip to main content
Log in

Transient analysis of diffusion-induced stress for hollow cylindrical electrode considering the end bending effect

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Lithiation and delithiation in electrodes lead to the evolution of internal stresses which may cause the mechanical degradation of batteries. In this work, the diffusion-induced stress of a hollow cylindrical electrode under either galvanostatic or potentiostatic charging is analytically solved based on a diffusion and mechanical coupled continuum model. The stress distributions at the end faces of the electrode with both ends traction free or fixed are also analyzed, the end effect of diffusion-induced bending is taken into account, and the resulting bending stresses are of practical importance for the stress distribution at the end faces. Using the obtained analytical expressions, a numerical example is given, and the results show that the stress distributions at the end faces change dramatically compared to the stresses remote from ends, both the charging mode and end constraints have significant effects on the distribution of stresses at the end faces of the electrodes, and the most dangerous location during the charging process is affected by the end’s constraint conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig.17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Yan, P., Zheng, J., Gu, M., Xiao, J., Zhang, J.G., Wang, C.M.: Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nat. Commun. 8, 14101 (2017). https://doi.org/10.1038/ncomms14101

    Article  Google Scholar 

  2. Palacin, M.R., de Guibert, A.: Why do batteries fail? Science 351(6273), 1253292 (2016). https://doi.org/10.1126/science.1253292

    Article  Google Scholar 

  3. Zhang, S., Zhao, K., Zhu, T., Li, J.: Electrochemomechanical degradation of high-capacity battery electrode materials. Prog. Mater .Sci. 89, 479–521 (2017). https://doi.org/10.1016/j.pmatsci.2017.04.014

    Article  Google Scholar 

  4. Shi, F., Song, Z., Ross, P.N., Somorjai, G.A., Ritchie, R.O., Komvopoulos, K.: Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries. Nat. Commun. (2016). https://doi.org/10.1038/ncomms11886

    Article  Google Scholar 

  5. Zhang, S.: Chemomechanical modeling of lithiation-induced failure in high-volume-change electrode materials for lithium ion batteries. NPJ Comput. Mater. (2017). https://doi.org/10.1038/s41524-017-0009-z

    Article  Google Scholar 

  6. Mendez, J.P., Ponga, M., Ortiz, M.: Diffusive molecular dynamics simulations of lithiation of silicon nanopillars. J. Mech. Phys. Solids 115, 123–141 (2018). https://doi.org/10.1016/j.jmps.2018.03.008

    Article  MathSciNet  Google Scholar 

  7. Koohbor, B., Sang, L., Çapraz, Ö.Ö., Gewirth, A.A.: In situ strain measurement in solid-state Li-ion battery electrodes. J. Electrochem. Soc. 168(1), 010516 (2021). https://doi.org/10.1149/1945-7111/abd60b

    Article  Google Scholar 

  8. Prussin, S.: Generation and Distribution of dislocations by solute diffusion. J. Appl. Phys. 32(10), 1876–1881 (1961). https://doi.org/10.1063/1.1728256

    Article  Google Scholar 

  9. Lee, S., Wang, W.L., Chen, J.R.: Diffusion-induced stresses in a hollow cylinder. Mater. Sci. Eng. 285(1–2), 186–194 (2000)

    Article  Google Scholar 

  10. Cheng, Y.-T., Verbrugge, M.W.: The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles. J. Appl. Phys. (2008). https://doi.org/10.1063/1.3000442

    Article  Google Scholar 

  11. Deshpande, R., Cheng, Y.-T., Verbrugge, M.W.: Modeling diffusion-induced stress in nanowire electrode structures. J. Power Sour. 195(15), 5081–5088 (2010). https://doi.org/10.1016/j.jpowsour.2010.02.021

    Article  Google Scholar 

  12. Zhang, X.-Y., Chen, H.-S., Fang, D.: Effects of surface stress on lithium-ion diffusion kinetics in nanosphere electrodes of lithium-ion batteries. Int. J. Mech. Sci. (2020). https://doi.org/10.1016/j.ijmecsci.2019.105323

    Article  Google Scholar 

  13. Cheng, Y.-T., Verbrugge, M.W.: Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation. J. Power Sour. 190(2), 453–460 (2009). https://doi.org/10.1016/j.jpowsour.2009.01.021

    Article  Google Scholar 

  14. Yang, X.-G., Bauer, C., Wang, C.-Y.: Sinusoidal current and stress evolutions in lithium-ion batteries. J. Power Sour. 327, 414–422 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.070

    Article  Google Scholar 

  15. Deshpande, R., Qi, Y., Cheng, Y.-T.: Effects of concentration-dependent elastic modulus on diffusion-induced stresses for battery applications. J. Electrochem. Soc. 157(8), A967–A971 (2010). https://doi.org/10.1149/1.3454762

    Article  Google Scholar 

  16. Cai, X., Guo, Z.: Influence of Li concentration-dependent diffusion coefficient and modulus hardening on diffusion-induced stresses in anisotropic anode particles. J. Electrochem. Soc. 168(1), 010517 (2021). https://doi.org/10.1149/1945-7111/abd82e

    Article  Google Scholar 

  17. Deshpande, R., Cheng, Y.-T., Verbrugge, M.W., Timmons, A.: Diffusion induced stresses and strain energy in a phase-transforming spherical electrode particle. J. Electrochem. Soc. 158(6), A718–A724 (2011). https://doi.org/10.1149/1.3565183

    Article  Google Scholar 

  18. Zhang, X., Hao, F., Chen, H., Fang, D.: Diffusion-induced stress and delamination of layered electrode plates with composition-gradient. Mech. Mater. 91, 351–362 (2015)

    Article  Google Scholar 

  19. Hu, H., Yu, P., Suo, Y.: Stress induced by diffusion and local chemical reaction in spherical composition-gradient electrodes. Acta Mech. 231(7), 2669–2678 (2020). https://doi.org/10.1007/s00707-020-02652-4

    Article  MATH  Google Scholar 

  20. Christensen, J., Newman, J.: Stress generation and fracture in lithium insertion materials. J. Solid State Electrochem. 10(5), 293–319 (2006). https://doi.org/10.1007/s10008-006-0095-1

    Article  Google Scholar 

  21. Bower, A.F., Guduru, P.R., Sethuraman, V.A.: A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell. J. Mech. Phys. Solids 59(4), 804–828 (2011). https://doi.org/10.1016/j.jmps.2011.01.003

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang, X., Shyy, W., Sastry, A.M.: Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. J. Electrochem. Soc. 154(10), A910–A916 (2007). https://doi.org/10.1149/1.2759840

    Article  Google Scholar 

  23. Bower, A.F., Guduru, P.R., Chason, E.: Analytical solutions for composition and stress in spherical elastic-plastic lithium-ion electrode particles containing a propagating phase boundary. Int. J. Solids Struct. 69–70, 328–342 (2015). https://doi.org/10.1016/j.ijsolstr.2015.05.018

    Article  Google Scholar 

  24. Christensen, J., Newman, J.: A mathematical model of stress generation and fracture in lithium manganese oxide. J. Electrochem. Soc. 153(6), A1019–A1030 (2006). https://doi.org/10.1149/1.2185287

    Article  Google Scholar 

  25. Cui, Z., Gao, F., Qu, J.: A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries. J. Mech. Phys. Solids 60(7), 1280–1295 (2012). https://doi.org/10.1016/j.jmps.2012.03.008

    Article  MathSciNet  Google Scholar 

  26. Anand, L.: A Cahn-Hilliard-type theory for species diffusion coupled with large elastic-plastic deformations. J. Mech. Phys. Solids 60(12), 1983–2002 (2012). https://doi.org/10.1016/j.jmps.2012.08.001

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, K., Li, Y., Wang, F., Zheng, B., Yang, F., Lu, D.: An analytical model for lithiation-induced concurrent plastic flow and phase transformation in a cylindrical silicon electrode. Int. J. Solids Struct. 202, 87–98 (2020). https://doi.org/10.1016/j.ijsolstr.2020.06.008

    Article  Google Scholar 

  28. Chen, Y., Chen, H., Luan, W.: Shakedown, ratcheting and fatigue analysis of cathode coating in lithium-ion battery under steady charging-discharging process. J. Mech. Phys. Solids 150, 104366 (2021). https://doi.org/10.1016/j.jmps.2021.104366

    Article  MathSciNet  Google Scholar 

  29. Drozdov, A.D.: A model for the mechanical response of electrode particles induced by lithium diffusion in Li-ion batteries. Acta Mech. 225(11), 2987–3005 (2014). https://doi.org/10.1007/s00707-014-1096-2

    Article  MathSciNet  MATH  Google Scholar 

  30. Bagheri, A., Arghavani, J., Naghdabadi, R., Brassart, L.: A theory for coupled lithium insertion and viscoplastic flow in amorphous anode materials for Li-ion batteries. Mech. Mater. (2021). https://doi.org/10.1016/j.mechmat.2020.103663

    Article  Google Scholar 

  31. Larché, F., Cahn, J.W.: A linear theory of thermochemical equilibrium of solids under stress. Acta Metall. 21(8), 1051–1063 (1973). https://doi.org/10.1016/0001-6160(73)90021-7

    Article  Google Scholar 

  32. Liu, Y., Lv, P., Ma, J., Bai, R., Duan, H.L.: Stress fields in hollow core-shell spherical electrodes of lithium ion batteries. Proc. R. Soc. A Math. Phys. Eng. Sci. (2014). https://doi.org/10.1098/rspa.2014.0299

  33. Haftbaradaran, H., Qu, J.: Two-dimensional chemo-elasticity under chemical equilibrium. Int. J. Solids Struct. 56–57, 126–135 (2015). https://doi.org/10.1016/j.ijsolstr.2014.11.025

    Article  Google Scholar 

  34. Gao, X., Fang, D., Qu, J.: A chemo-mechanics framework for elastic solids with surface stress. Proc. R. Soc. A Math. Phys. Eng. Sci. (2015). https://doi.org/10.1098/rspa.2015.0366

  35. Ryu, I., Choi, J.W., Cui, Y., Nix, W.D.: Size-dependent fracture of Si nanowire battery anodes. J. Mech. Phys. Solids 59(9), 1717–1730 (2011). https://doi.org/10.1016/j.jmps.2011.06.003

    Article  Google Scholar 

  36. Eshghinejad, A., Li, J.: The coupled lithium ion diffusion and stress in battery electrodes. Mech. Mater. 91, 343–350 (2015). https://doi.org/10.1016/j.mechmat.2015.09.015

    Article  Google Scholar 

  37. Bagheri, A., Arghavani, J., Naghdabadi, R.: On the effects of hydrostatic stress on Li diffusion kinetics and stresses in spherical active particles of Li-ion battery electrodes. Mech. Mater. (2019). https://doi.org/10.1016/j.mechmat.2019.103134

    Article  Google Scholar 

  38. Chen, H., Huang, H.-Y.S.: Modeling and simulation of the non-equilibrium process for a continuous solid solution system in lithium-ion batteries. Int. J. Solids Struct. 212, 124–142 (2021). https://doi.org/10.1016/j.ijsolstr.2020.11.014

    Article  Google Scholar 

  39. Holzapfel, M., Buqa, H., Scheifele, W., Novak, P., Petrat, F.M.: A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion. Chem. Commun. 12, 1566–1568 (2005). https://doi.org/10.1039/b417492e

    Article  Google Scholar 

  40. Patel, P., Kim, I.S., Kumta, P.N.: Nanocomposites of silicon/titanium carbide synthesized using high-energy mechanical milling for use as anodes in lithium-ion batteries. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 116(3), 347–352 (2005). https://doi.org/10.1016/j.mseb.2004.05.046

    Article  Google Scholar 

  41. Zhu, X., Xie, Y., Chen, H., Luan, W.: Numerical analysis of the cyclic mechanical damage of Li-ion battery electrode and experimental validation. Int. J. Fatigue 142, 105915 (2021). https://doi.org/10.1016/j.ijfatigue.2020.105915

    Article  Google Scholar 

  42. Chan, C.K., Peng, H., Liu, G., McIlwrath, K., Zhang, X.F., Huggins, R.A., Cui, Y.: High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3(1), 31–35 (2008). https://doi.org/10.1038/nnano.2007.411

    Article  Google Scholar 

  43. Xiao, X., Liu, P., Verbrugge, M.W., Haftbaradaran, H., Gao, H.: Improved cycling stability of silicon thin film electrodes through patterning for high energy density lithium batteries. J. Power Sour. 196(3), 1409–1416 (2011). https://doi.org/10.1016/j.jpowsour.2010.08.058

    Article  Google Scholar 

  44. Bhandakkar, T.K., Gao, H.: Cohesive modeling of crack nucleation in a cylindrical electrode under axisymmetric diffusion induced stresses. Int. J. Solids Struct. 48(16–17), 2304–2309 (2011). https://doi.org/10.1016/j.ijsolstr.2011.04.005

    Article  Google Scholar 

  45. Yao, Y., McDowell, M.T., Ryu, I., Wu, H., Liu, N., Hu, L., Nix, W.D., Cui, Y.: Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 11(7), 2949–2954 (2011). https://doi.org/10.1021/nl201470j

    Article  Google Scholar 

  46. Zhang, K., Li, Y., Zheng, B., Wu, G., Wu, J., Yang, F.: Large deformation analysis of diffusion-induced buckling of nanowires in lithium-ion batteries. Int. J. Solids Struct. 108, 230–243 (2017). https://doi.org/10.1016/j.ijsolstr.2016.12.020

    Article  Google Scholar 

  47. Zhang, K., Li, Y., Wu, J., Zheng, B., Yang, F.: Lithiation-induced buckling of wire-based electrodes in lithium-ion batteries: a phase-field model coupled with large deformation. Int. J. Solids Struct. 144–145, 289–300 (2018). https://doi.org/10.1016/j.ijsolstr.2018.05.014

    Article  Google Scholar 

  48. Zhang, K., Li, Y., Wang, F., Zheng, B., Yang, F.: Stress effect on self-limiting lithiation in silicon-nanowire electrode. Appl. Phys. Express (2019). https://doi.org/10.7567/1882-0786/ab0ce8

    Article  Google Scholar 

  49. Xing, H., Liu, Y., Wang, B.: Mechano-electrochemical and buckling analysis of composition-gradient nanowires electrodes in lithium-ion battery. Acta Mech. 230(12), 4145–4156 (2019). https://doi.org/10.1007/s00707-019-02486-9

    Article  MathSciNet  Google Scholar 

  50. Zhang, Y., Zhan, S., Zhang, K., Zheng, B., Lyu, L.: Buckling behavior of a wire-like electrode with a concentration-dependent elastic modulus based on a deformed configuration. Eur. J. Mech. A. Solids 85, 104111 (2021). https://doi.org/10.1016/j.euromechsol.2020.104111

    Article  MathSciNet  MATH  Google Scholar 

  51. Chakraborty, J., Please, C.P., Goriely, A., Chapman, S.J.: Combining mechanical and chemical effects in the deformation and failure of a cylindrical electrode particle in a Li-ion battery. Int. J. Solids Struct. 54, 66–81 (2015). https://doi.org/10.1016/j.ijsolstr.2014.11.006

    Article  Google Scholar 

  52. Guo, Z., Zhang, T., Hu, H., Song, Y., Zhang, J.: Effects of hydrostatic stress and concentration-dependent elastic modulus on diffusion-induced stresses in cylindrical li-ion batteries. J. Appl. Mech. (2013). https://doi.org/10.1115/1.4025271

    Article  Google Scholar 

  53. Yang, F.: Effect of diffusion-induced bending on diffusion-induced stress near the end faces of an elastic hollow cylinder. Mech. Res. Commun. 51, 72–77 (2013). https://doi.org/10.1016/j.mechrescom.2013.05.006

    Article  Google Scholar 

  54. Zhang, X.L., Zhong, Z.: A coupled theory for chemically active and deformable solids with mass diffusion and heat conduction. J. Mech. Phys. Solids 107, 49–75 (2017). https://doi.org/10.1016/j.jmps.2017.06.013

    Article  MathSciNet  Google Scholar 

  55. Wang, X.-Q., Yang, Q.-S.: An analytical solution for chemo-mechanical coupled problem in deformable sphere with mass diffusion. Int. J. Appl. Mech. (2020). https://doi.org/10.1142/s1758825120500763

    Article  Google Scholar 

  56. Haftbaradaran, H., Song, J., Curtin, W.A., Gao, H.: Continuum and atomistic models of strongly coupled diffusion, stress, and solute concentration. J. Power Sour. 196(1), 361–370 (2011). https://doi.org/10.1016/j.jpowsour.2010.06.080

    Article  Google Scholar 

  57. Timoshenko, S.: Strength of Materials, Part 2: Advanced Theory and Problems, 3rd edn. Van Nostrand Reinhold Company, New York (1958)

    MATH  Google Scholar 

  58. Crank, J.: The Mathematics of Diffusion, 2nd edn. Oxford University Press, Oxford (1975)

    MATH  Google Scholar 

  59. Song, Y., Lu, B., Ji, X., Zhang, J.: Diffusion induced stresses in cylindrical lithium-ion batteries: analytical solutions and design insights. J. Electrochem. Soc. 159(12), A2060–A2068 (2012). https://doi.org/10.1149/2.079212jes

    Article  Google Scholar 

  60. Song, X., Lu, Y., Wang, F., Zhao, X., Chen, H.: A coupled electro-chemo-mechanical model for all-solid-state thin film Li-ion batteries: The effects of bending on battery performances. J. Power Sour. (2020). https://doi.org/10.1016/j.jpowsour.2020.227803

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under the Grant Numbers: 11932002, 11802116, 11772012 and 11632005, which are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingsheng Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Liu, X. & Yang, Q. Transient analysis of diffusion-induced stress for hollow cylindrical electrode considering the end bending effect. Acta Mech 232, 3591–3609 (2021). https://doi.org/10.1007/s00707-021-03014-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-03014-4

Navigation