Skip to main content

Advertisement

Log in

Waiting period from diagnosis for mortgage insurance issued to cancer survivors

  • Original Research Paper
  • Published:
European Actuarial Journal Aims and scope Submit manuscript

Abstract

The Massart (J Cancer Policy 15:70–71, 2018) testimonial illustrates the difficulties faced by patients having survived cancer to access mortgage insurance securing home loan. Data collected by national registries nevertheless suggest that excess mortality due to some types of cancer becomes moderate or even negligible after some waiting period. In relation to the insurance laws passed in France and more recently in Belgium creating a right to be forgotten for cancer survivors, the present study aims to determine the waiting period after which standard premium rates become applicable. Compared to the French and Belgian laws, a waiting period starting at diagnosis (as recorded in national databases) is favored over a waiting period starting at the end of the therapeutic treatment protocol. This aims to avoid disputes when a claim is filed. Since diagnosis is often recorded in the official registry database, as is the case for the Belgian Cancer Registry, its date is reliable and unquestionable in case of claim. Based on 28,994 melanoma and thyroid cancer cases recorded by the Belgian Cancer Registry, the length of the waiting period is assessed with the help of widely-accepted tools from biostatistics, including relative survival models and time-to-cure indicators. It turns out for instance that a waiting period of 4 years after diagnosis is enough for 30-year-old thyroid cancer patients. This appears to be similar to the 3-year period starting at the end of treatment protocol according to the Belgian law in such a case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Amico M, Van Keilegom I (2018) Cure models in survival analysis. Annu Rev Stat Appl 5:311–342

    MathSciNet  Google Scholar 

  2. Andersson TM, Dickman PW, Eloranta S, Lambert PC (2011) Estimating and modelling cure in population-based cancer studies within the framework of flexible parametric survival models. BMC Med Res Methodol 11(1):96

    Google Scholar 

  3. Bailar JC III, Smith EM (1986) Progress against cancer? N Engl J Med 314(19):1226–1232

    Google Scholar 

  4. Balch CM, Soong S-J, Gershenwald JE, Thompson JF, Reintgen DS, Cascinelli N, Urist M, McMasters KM, Ross MI, Kirkwood JM et al (2001) Prognostic factors analysis of 17,600 melanoma patients: validation of the american joint committee on cancer melanoma staging system. J Clin Oncol 19(16):3622–3634

    Google Scholar 

  5. Belot A, Ndiaye A, Luque-Fernandez M-A, Kipourou D-K, Maringe C, Rubio FJ, Rachet B (2019) Summarizing and communicating on survival data according to the audience: a tutorial on different measures illustrated with population-based cancer registry data. Clin Epidemiol 11:53–65

    Google Scholar 

  6. Berkson J, Gage RP (1950) Calculation of survival rates for cancer. In: Proceedings of the staff meetings. Mayo Clinic, vol 25, p 270

  7. Berkson J, Gage RP (1952) Survival curve for cancer patients following treatment. J Am Stat Assoc 47(259):501–515

    Google Scholar 

  8. Berrino F, Capocaccia R, Estève J, Gatta G, Hakulinen T, Micheli A, Sant M, Verdecchia A (1999) Survival of cancer patients in europe: the eurocare-2 study. In: Survival of cancer patients in Europe: the EUROCARE-2 study, pp 1–CD

  9. Boag JW (1949) Maximum likelihood estimates of the proportion of patients cured by cancer therapy. J R Stat Soc Ser B (Methodological) 11(1):15–53

    MATH  Google Scholar 

  10. Bolard P, Quantin C, Esteve J, Faivre J, Abrahamowicz M (2001) Modelling time-dependent hazard ratios in relative survival: application to colon cancer. J Clin Epidemiol 54(10):986–996

    Google Scholar 

  11. Boussari O, Romain G, Remontet L, Bossard N, Mounier M, Bouvier A-M, Binquet C, Colonna M, Jooste V (2018) A new approach to estimate time-to-cure from cancer registries data. Cancer Epidemiol 53:72–80

    Google Scholar 

  12. Buckley J (1984) Additive and multiplicative models for relative survival rates. Biometrics 40:51–62

    Google Scholar 

  13. Bureau du suivi de la tarification (2018) Rapport sur l’activité 2017. https://www.bureaudusuivi.be/images/docs/RapportAnnuel_2017.pdf

  14. Chang AE, Ganz PA, Hayes DF, Kinsella T, Pass HI, Schiller JH, Stone RM, Strecher V (2007) Oncology: an evidence-based approach. Springer, Berlin

    Google Scholar 

  15. Chauvenet M, Lepage C, Jooste V, Cottet V, Faivre J, Bouvier A-M (2009) Prevalence of patients with colorectal cancer requiring follow-up or active treatment. Eur J Cancer 45(8):1460–1465

    Google Scholar 

  16. Chen M-H, Ibrahim JG, Sinha D (1999) A new Bayesian model for survival data with a surviving fraction. J Am Stat Assoc 94(447):909–919

    MathSciNet  MATH  Google Scholar 

  17. Clements M, Liu X-R (2019) rstpm2: Smooth Survival Models, Including Generalized Survival Models. R package version 1(5):1

    Google Scholar 

  18. Clerc-Urmès I, Grzebyk M, Hédelin G, CENSUR working survival group (2020) flexrsurv: An R package for relative survival analysis. R package version 1(4):5

  19. Cleveland WS, Grosse E (1991) Computational methods for local regression. Stat Comput 1(1):47–62

    Google Scholar 

  20. Cleveland WS, Devlin SJ, Grosse E (1988) Regression by local fitting: methods, properties, and computational algorithms. J Econometr 37(1):87–114

    MathSciNet  Google Scholar 

  21. Cleveland W, Grosse E, Shyu M (1992) A package of c and fortran routines for fitting local regression models. In: Chambers JM (ed) Statistical methods. S. Chapman and Hall Ltd., London

    Google Scholar 

  22. Coleman MP, Babb P, Damiecki P, Grosclaude P, Honjo S, Jones J, Knerer G, Pitard A, Quinn M, Sloggett A et al (1999) Cancer survival trends in England and Wales, 1971–1995: deprivation and NHS region. Stationery Office Books

  23. Dal Maso L, Guzzinati S, Buzzoni C, Capocaccia R, Serraino D, Caldarella A, Dei Tos A, Falcini F, Autelitano M, Masanotti G et al (2014) Long-term survival, prevalence, and cure of cancer: a population-based estimation for 818 902 italian patients and 26 cancer types. Ann Oncol 25(11):2251–2260

    Google Scholar 

  24. Danieli C, Remontet L, Bossard N, Roche L, Belot A (2012) Estimating net survival: the importance of allowing for informative censoring. Stat Med 31(8):775–786

    MathSciNet  Google Scholar 

  25. Dickman PW, Sloggett A, Hills M, Hakulinen T (2004) Regression models for relative survival. Stat Med 23(1):51–64

    Google Scholar 

  26. Dodd EO, Streftaris G, Waters HR, Stott AD (2015) The effect of model uncertainty on the pricing of critical illness insurance. Ann Actuar Sci 9(1):108–133

    Google Scholar 

  27. Eilers PH, Marx BD (1996) Flexible smoothing with b-splines and penalties. Stat Sci 11(2):89–102

    MathSciNet  MATH  Google Scholar 

  28. Enstrom JE, Austin DF (1977) Interpreting cancer survival rates. Science 195(4281):847–851

    Google Scholar 

  29. Esteve J, Benhamou E, Croasdale M, Raymond L (1990) Relative survival and the estimation of net survival: elements for further discussion. Stat Med 9(5):529–538

    Google Scholar 

  30. Esteve J, Benhamou E, Raymond L et al (1994) Statistical methods in cancer research. volume iv. descriptive epidemiology. IARC Sci publ 128(1):302

    Google Scholar 

  31. Fauvernier M, Remontet L, Uhry Z, Bossard N, Roche L (2019a) survpen: an r package for hazard and excess hazard modelling with multidimensional penalized splines. J Open Sour Softw 4(40):1434

    Google Scholar 

  32. Fauvernier M, Roche L, Uhry Z, Tron L, Bossard N, Remontet L, and in the Estimation of Net Survival Working Survival Group C (2019b) Multi-dimensional penalized hazard model with continuous covariates: applications for studying trends and social inequalities in cancer survival. J R Stat Soc Ser C (Applied Statistics)

  33. Geskus RB (2015) Data analysis with competing risks and intermediate states, vol 82. CRC Press, Boca Raton

    Google Scholar 

  34. Giorgi R, Payan J, Gouvernet J (2005) Rsurv: a function to perform relative survival analysis with s-plus or r. Comput Methods Progr Biomed 78(2):175–178

    Google Scholar 

  35. Haberman S, Renshaw A (1990) Generalised linear models and excess mortality from peptic ulcers. Insur Math Econ 9(1):21–32

    MathSciNet  Google Scholar 

  36. Hakulinen T, Tenkanen L (1987) Regression analysis of relative survival rates. J R Stat Soc Ser C (Appl Stat) 36(3):309–317

    Google Scholar 

  37. Jooste V, Grosclaude P, Remontet L, Launoy G, Baldi I, Molinié F, Arveux P, Bossard N, Bouvier A-M, Colonna M et al (2013) Unbiased estimates of long-term net survival of solid cancers in france. Int J Cancer 132(10):2370–2377

    Google Scholar 

  38. Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53(282):457–481

    MathSciNet  MATH  Google Scholar 

  39. Lambert PC, Thompson JR, Weston CL, Dickman PW (2006) Estimating and modeling the cure fraction in population-based cancer survival analysis. Biostatistics 8(3):576–594

    MATH  Google Scholar 

  40. Latouche A, Allignol A, Beyersmann J, Labopin M, Fine JP (2013) A competing risks analysis should report results on all cause-specific hazards and cumulative incidence functions. J Clin Epidemiol 66(6):648–653

    Google Scholar 

  41. Legrand C, Bertrand A (2019) Cure models in oncology clinical trials. Textb Clin Trials Oncol Stat Perspect 1:465–492

    Google Scholar 

  42. Lemaire J, Subramanian K, Armstrong K, Asch DA (2000) Pricing term insurance in the presence of a family history of breast or ovarian cancer. N Am Actuar J 4(2):75–87

    MathSciNet  MATH  Google Scholar 

  43. Lenner P (1990) The excess mortality rate: a useful concept in cancer epidemiology. Acta Oncol 29(5):573–576

    Google Scholar 

  44. Maller RA, Zhou X (1996) Survival analysis with long-term survivors. Wiley, Oxford

    MATH  Google Scholar 

  45. Massart M (2018) A long-term survivor’s perspective on supportive policy for a better access to insurance, loan and mortgage. J Cancer Policy 15:70–71

    Google Scholar 

  46. Mounier M (2015) Apport des méthodes de survie nette dans le pronostic des lymphomes malins non hodgkiniens en population générale. PhD thesis, Université Claude Bernard-Lyon I

  47. Oksanen H (1998) Modelling the survival of prostate cancer patients. University of Tampere

  48. Othus M, Barlogie B, LeBlanc ML, Crowley JJ (2012) Cure models as a useful statistical tool for analyzing survival. Clin Cancer Res 18(14):3731–3736

    Google Scholar 

  49. Pavlič K, Pohar Perme M (2019) Using pseudo-observations for estimation in relative survival. Biostatistics 20(3):384–399

    MathSciNet  Google Scholar 

  50. Percy C, Stanek E 3rd, Gloeckler L (1981) Accuracy of cancer death certificates and its effect on cancer mortality statistics. Am J Public Health 71(3):242–250

    Google Scholar 

  51. Perme MP, Pavlič K (2018) Nonparametric relative survival analysis with the R package relsurv. J Stat Softw 87(8):1–27

    Google Scholar 

  52. Perme MP, Stare J, Estève J (2012) On estimation in relative survival. Biometrics 68(1):113–120

    MathSciNet  MATH  Google Scholar 

  53. Perme MP, Estève J, Rachet B (2016) Analysing population-based cancer survival-settling the controversies. BMC Cancer 16(1):1–8

    Google Scholar 

  54. Pohar M, Stare J (2006) Relative survival analysis in r. Comput Methods Programs Biomed 81(3):272–278

    Google Scholar 

  55. Quantin C, Abrahamowicz M, Moreau T, Bartlett G, MacKenzie T, Adnane Tazi M, Lalonde L, Faivre J (1999) Variation over time of the effects of prognostic factors in a population-based study of colon cancer: comparison of statistical models. Am J Epidemiol 150(11):1188–1200

    Google Scholar 

  56. R Core Team (2017) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria

  57. Remontet L, Uhry Z, Bossard N, Iwaz J, Belot A, Danieli C, Charvat H, Roche L, Group C W S (2019) Flexible and structured survival model for a simultaneous estimation of non-linear and non-proportional effects and complex interactions between continuous variables: Performance of this multidimensional penalized spline approach in net survival trend analysis. Stat Methods Med Res 28(8):2368–2384

    MathSciNet  Google Scholar 

  58. Renshaw AE (1988) Modelling excess mortality using glim. J Inst Actuar 115(2):299–315

    Google Scholar 

  59. Ries L, Eisner M, Kosary C, Hankey B, Miller B, Clegg L, Edwards B (2002) Seer cancer statistics review, 1973–1999. bethesda, md: National cancer institute. https://seer.cancer.gov/csr/1973-1999

  60. Schaffar R, Rachet B, Belot A, Woods LM (2017) Estimation of net survival for cancer patients: relative survival setting more robust to some assumption violations than cause-specific setting, a sensitivity analysis on empirical data. Eur J Cancer 72:78–83

    Google Scholar 

  61. Schvartsman G, Taranto P, Glitza IC, Agarwala SS, Atkins MB, Buzaid AC (2019) Management of metastatic cutaneous melanoma: updates in clinical practice. Ther Adv Med Oncol 11:1758835919851663

    Google Scholar 

  62. Shang K (2019) Individual Cancer Mortality Prediction. Fundaciòn Mapfre

  63. Silversmit G, Jegou D, Vaes E, Van Hoof E, Goetghebeur E, Van Eycken L (2017) Cure of cancer for seven cancer sites in the Flemish region. Int J Cancer 140(5):1102–1110

    Google Scholar 

  64. The Belgian Cancer Registry (2012) Cancer survival in belgium. https://kankerregister.org/media/docs/publications/CancerSurvivalinBelgium.PDF

  65. Tsodikov A, Ibrahim J, Yakovlev A (2003) Estimating cure rates from survival data: an alternative to two-component mixture models. J Am Stat Assoc 98(464):1063–1078

    MathSciNet  Google Scholar 

  66. Tsodikov AD, Yakovlev AY, Asselain B (1996) Stochastic models of tumor latency and their biostatistical applications, vol 1. World Scientific, Singapore

    MATH  Google Scholar 

  67. Yue JC, Wang H-C, Leong Y-Y, Su W-P (2018) Using Taiwan national health insurance database to model cancer incidence and mortality rates. Insur Math Econ 78:316–324

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was funded by a UCLouvain grant. The three first authors express their sincere gratitude to the university for making such a research project possible. The support of the Belgian Cancer Registry is gratefully acknowledged for providing access to the data and for research assistance. The authors also thank the two anonymous referees for comments that have been very helpful for revising previous versions of the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Soetewey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soetewey, A., Legrand, C., Denuit, M. et al. Waiting period from diagnosis for mortgage insurance issued to cancer survivors. Eur. Actuar. J. 11, 135–160 (2021). https://doi.org/10.1007/s13385-020-00254-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13385-020-00254-x

Keywords

Navigation