Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Non-invasive molecular imaging of kidney diseases

A Publisher Correction to this article was published on 05 July 2021

This article has been updated

Abstract

In nephrology, differential diagnosis or assessment of disease activity largely relies on the analysis of glomerular filtration rate, urinary sediment, proteinuria and tissue obtained through invasive kidney biopsies. However, currently available non-invasive functional parameters, and most serum and urine biomarkers, cannot capture intrarenal molecular disease processes specifically. Moreover, although histopathological analyses of kidney biopsy samples enable the visualization of pathological morphological and molecular alterations, they only provide information about a small part of the kidney and do not allow longitudinal monitoring. These limitations not only hinder understanding of the dynamics of specific disease processes in the kidney, but also limit the targeting of treatments to active phases of disease and the development of novel targeted therapies. Molecular imaging enables non-invasive and quantitative assessment of physiological or pathological processes by combining imaging technologies with specific molecular probes. Here, we discuss current preclinical and clinical molecular imaging approaches in nephrology. Non-invasive visualization of the kidneys through molecular imaging can be used to detect and longitudinally monitor disease activity and can therefore provide companion diagnostics to guide clinical trials, as well as the safe and effective use of drugs.

Key points

  • Today, nephrology relies on the analysis of glomerular filtration rate, urinary sediment, proteinuria and invasive kidney biopsies to assess disease activity; molecular imaging is a more specific non-invasive approach that visualizes pathological processes within the kidneys with high accuracy.

  • 18F-fluorodeoxyglucose–PET is currently the most commonly used approach of molecular kidney imaging, although it does not reflect a specific disease or pathway.

  • Most clinical trials of molecular kidney imaging are performed in patients with renal cell carcinomas and promising targets include carbonic anhydrase 9 and prostate-specific membrane antigen.

  • Molecular imaging of the kidneys is challenging because it is a major elimination organ and non-specific probe uptake can be high; however, preclinical experiments and early clinical studies have identified targets and established imaging protocols for molecular imaging of acute and chronic kidney diseases, with a focus on acute epithelial or endothelial cell injury, inflammation or fibrosis.

  • Similar to oncology, molecular kidney imaging might improve disease staging, prognostication, monitoring of treatment responses and patient management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Categories of use and their opportunities in molecular kidney imaging.
Fig. 2: Targets for molecular imaging in kidney diseases.
Fig. 3: Examples of in vivo kidney fibrosis imaging in mice.

Similar content being viewed by others

Change history

References

  1. Thakur, M. L., Lentle, B. C. & SNM; Radiological Society of North America (RSNA). Joint SNM/RSNA Molecular Imaging Summit Statement. J. Nucl. Med. 46, 11N–13N, 42N (2005).

    PubMed  Google Scholar 

  2. Mankoff, D. A. A definition of molecular imaging. J. Nucl. Med. 48, 18N, 21N (2007).

    PubMed  Google Scholar 

  3. Ehlerding, E. B., England, C. G., McNeel, D. G. & Cai, W. Molecular imaging of immunotherapy targets in cancer. J. Nucl. Med. 57, 1487–1492 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mankoff, D. A., Farwell, M. D., Clark, A. S. & Pryma, D. A. Making molecular imaging a clinical tool for precision oncology: a review. JAMA Oncol. 3, 695–701 (2017).

    Article  PubMed  Google Scholar 

  5. Allali, G. et al. Brain imaging of locomotion in neurological conditions. Neurophysiol. Clin. 48, 337–359 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chen, I. Y. & Wu, J. C. Cardiovascular molecular imaging: focus on clinical translation. Circulation 123, 425–443 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Farber, G. et al. The future of cardiac molecular imaging. Semin. Nucl. Med. 50, 367–385 (2020).

    Article  PubMed  Google Scholar 

  8. Taylor, A. T. Radionuclides in nephrourology, part 1: radiopharmaceuticals, quality control, and quantitative indices. J. Nucl. Med. 55, 608–615 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Taylor, A. T., Lipowska, M. & Cai, H. 99mTc(CO)3(NTA) and 131I-OIH: comparable plasma clearances in patients with chronic kidney disease. J. Nucl. Med. 54, 578–584 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Jaksic, E. et al. Clinical investigations of 99mTc-p-aminohippuric acid as a new renal agent. Nucl. Med. Commun. 30, 76–81 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Nguyen, D. L. et al. Reproducibility of differential renal function measurement using technetium-99m-ethylenedicysteine dynamic renal scintigraphy: a French prospective multicentre study. Nucl. Med. Commun. 39, 10–15 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Stoffel, M. et al. Evaluation of technetium-99m-L,L-EC in renal transplant recipients: a comparative study with technetium-99m-MAG3 and iodine-125-OIH. J. Nucl. Med. 35, 1951–1958 (1994).

    CAS  PubMed  Google Scholar 

  13. Weyer, K. et al. Renal uptake of 99mTc-dimercaptosuccinic acid is dependent on normal proximal tubule receptor-mediated endocytosis. J. Nucl. Med. 54, 159–165 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Lee, B. H. et al. Decreased renal uptake of (99m)Tc-DMSA in patients with tubular proteinuria. Pediatr. Nephrol. 24, 2211–2216 (2009).

    Article  PubMed  Google Scholar 

  15. Bobot, M. et al. Renal SPECT/CT with 99mTc-dimercaptosuccinic acid is a non-invasive predictive marker for the development of interstitial fibrosis in a rat model of renal insufficiency. Nephrol. Dial. Transpl. 36, 804–810 (2020).

    Article  Google Scholar 

  16. Fatemikia, H. et al. Comparison of 99mTc-DMSA renal scintigraphy with biochemical and histopathological findings in animal models of acute kidney injury. Mol. Cell Biochem. 434, 163–169 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Hitzel, A. et al. Quantitative analysis of 99mTc-DMSA during acute pyelonephritis for prediction of long-term renal scarring. J. Nucl. Med. 45, 285–289 (2004).

    PubMed  Google Scholar 

  18. Stieger, B., Unadkat, J. D., Prasad, B., Langer, O. & Gali, H. Role of (drug) transporters in imaging in health and disease. Drug Metab. Dispos. 42, 2007–2015 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Santos, A. I. et al. Interobserver agreement on cortical tracer transit in 99mTc-MAG3 renography applied to congenital hydronephrosis. Nucl. Med. Commun. 38, 124–128 (2017).

    Article  PubMed  Google Scholar 

  20. Funahashi, Y. et al. Effect of warm ischemia on renal function during partial nephrectomy: assessment with new 99mTc-mercaptoacetyltriglycine scintigraphy parameter. Urology 79, 160–164 (2012).

    Article  PubMed  Google Scholar 

  21. Pathuri, G. et al. Evaluation of (99m)Tc-probestin SPECT as a novel technique for noninvasive imaging of kidney aminopeptidase N expression. Mol. Pharm. 11, 2948–2953 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Longo, D. L., Busato, A., Lanzardo, S., Antico, F. & Aime, S. Imaging the pH evolution of an acute kidney injury model by means of iopamidol, a MRI-CEST pH-responsive contrast agent. Magn. Reson. Med. 70, 859–864 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Irrera, P., Consolino, L., Cutrin, J. C., Zollner, F. G. & Longo, D. L. Dual assessment of kidney perfusion and pH by exploiting a dynamic CEST-MRI approach in an acute kidney ischemia-reperfusion injury murine model. NMR Biomed. 33, e4287 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Clatworthy, M. R. et al. Magnetic resonance imaging with hyperpolarized [1,4-C-13(2)]fumarate allows detection of early renal acute tubular necrosis. Proc. Natl Acad. Sci. USA 109, 13374–13379 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nielsen, P. M. et al. Fumarase activity: an in vivo and in vitro biomarker for acute kidney injury. Sci. Rep. 7, 40812 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gallagher, F. A. et al. Production of hyperpolarized [1,4-13C2]malate from [1,4-13C2]fumarate is a marker of cell necrosis and treatment response in tumors. Proc. Natl Acad. Sci. USA 106, 19801–19806 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang, J., Li, J., Lyu, Y., Miao, Q. & Pu, K. Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury. Nat. Mater. 18, 1133–1143 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Allison, S. J. A molecular imaging approach for the early, real-time diagnosis of acute kidney injury. Nat. Rev. Nephrol. 15, 458 (2019).

    PubMed  Google Scholar 

  29. Akhtar, A. M. et al. In vivo quantification of VCAM-1 expression in renal ischemia reperfusion injury using non-invasive magnetic resonance molecular imaging. PLoS ONE 5, e12800 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Hoyt, K. et al. Molecular ultrasound imaging of tissue inflammation using an animal model of acute kidney injury. Mol. Imaging Biol. 17, 786–792 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Boesen, E. I., Crislip, G. R. & Sullivan, J. C. Use of ultrasound to assess renal reperfusion and P-selectin expression following unilateral renal ischemia. Am. J. Physiol. Renal Physiol. 303, F1333–1340 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Andonian, S., Coulthard, T., Smith, A. D., Singhal, P. S. & Lee, B. R. Real-time quantitation of renal ischemia using targeted microbubbles: in-vivo measurement of P-selectin expression. J. Endourol. 23, 373–378 (2009).

    Article  PubMed  Google Scholar 

  33. Atukorale, P. U., Covarrubias, G., Bauer, L. & Karathanasis, E. Vascular targeting of nanoparticles for molecular imaging of diseased endothelium. Adv. Drug Deliv. Rev. 113, 141–156 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Guler, R., Svedmark, S. F., Abouzayed, A., Orlova, A. & Lofblom, J. Increasing thermal stability and improving biodistribution of VEGFR2-binding affibody molecules by a combination of in silico and directed evolution approaches. Sci. Rep. 10, 18148 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wan, C. H., Tseng, J. R., Lee, M. H., Yang, L. Y. & Yen, T. C. Clinical utility of FDG PET/CT in acute complicated pyelonephritis-results from an observational study. Eur. J. Nucl. Med. Mol. Imaging 45, 462–470 (2018).

    Article  PubMed  Google Scholar 

  36. Pijl, J. P., Glaudemans, A., Slart, R. & Kwee, T. C. 18)F-FDG PET/CT in autosomal dominant polycystic kidney disease patients with suspected cyst infection. J. Nucl. Med. 59, 1734–1741 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Tseng, J. R. et al. Clinical usefulness of 18F-FDG PET/CT for the detection of infections of unknown origin in patients undergoing maintenance hemodialysis. J. Nucl. Med. 56, 681–687 (2015).

    Article  PubMed  Google Scholar 

  38. George, E. A., Codd, J. E., Newton, W. T., Haibach, H. & Donati, R. M. Comparative evaluation of renal transplant rejection with radioiodinated fibrinogen 99mTc-sulfur collid, and 67Ga-citrate. J. Nucl. Med. 17, 175–180 (1976).

    CAS  PubMed  Google Scholar 

  39. Grabner, A. et al. Renal contrast-enhanced sonography findings in a model of acute cellular allograft rejection. Am. J. Transpl. 16, 1612–1619 (2016).

    Article  CAS  Google Scholar 

  40. Grabner, A. et al. Noninvasive imaging of acute renal allograft rejection by ultrasound detection of microbubbles targeted to T-lymphocytes in rats. Ultraschall Med. 37, 82–91 (2016).

    CAS  PubMed  Google Scholar 

  41. Martins, F. P., Souza, S. A., Goncalves, R. T., Fonseca, L. M. & Gutfilen, B. Preliminary results of [99mTc]OKT3 scintigraphy to evaluate acute rejection in renal transplants. Transpl. Proc. 36, 2664–2667 (2004).

    Article  CAS  Google Scholar 

  42. Derlin, T. et al. Integrating MRI and chemokine receptor CXCR4-targeted PET for detection of leukocyte infiltration in complicated urinary tract infections after kidney transplantation. J. Nucl. Med. 58, 1831–1837 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Sargsyan, S. A. et al. Detection of glomerular complement C3 fragments by magnetic resonance imaging in murine lupus nephritis. Kidney Int. 81, 152–159 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Serkova, N. J. et al. Renal inflammation: targeted iron oxide nanoparticles for molecular MR imaging in mice. Radiology 255, 517–526 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Huang, Q. et al. C5b-9-targeted molecular MR imaging in rats with Heymann nephritis: a new approach in the evaluation of nephrotic syndrome. PLoS ONE 10, e0121244 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Smith, R. J. H. et al. C3 glomerulopathy — understanding a rare complement-driven renal disease. Nat. Rev. Nephrol. 15, 129–143 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hanssen, O. et al. Non-invasive approaches in the diagnosis of acute rejection in kidney transplant recipients. Part I. In vivo imaging methods. Clin. Kidney J. 10, 97–105 (2017).

    CAS  PubMed  Google Scholar 

  48. Lovinfosse, P. et al. Fluorodeoxyglucose F18 positron emission tomography coupled with computed tomography in suspected acute renal allograft rejection. Am. J. Transpl. 16, 310–316 (2016).

    Article  CAS  Google Scholar 

  49. Even-Sapir, E. et al. Kidney allografts and remaining contralateral donor kidneys before and after transplantation: assessment by quantitative 99mTc-DMSA SPECT. J. Nucl. Med. 43, 584–588 (2002).

    PubMed  Google Scholar 

  50. Bajen, M. T. et al. MAG3 renogram deconvolution in kidney transplantation: utility of the measurement of initial tracer uptake. J. Nucl. Med. 38, 1295–1299 (1997).

    CAS  PubMed  Google Scholar 

  51. Benjamens, S. et al. Limited clinical value of two consecutive post-transplant renal scintigraphy procedures. Eur. Radiol. 30, 452–460 (2020).

    Article  PubMed  Google Scholar 

  52. Erbas, B. Peri- and postsurgical evaluations of renal transplant. Semin. Nucl. Med. 47, 647–659 (2017).

    Article  PubMed  Google Scholar 

  53. George, E. A., Codd, J. E., Newton, W. T. & Donati, R. M. 67Ga citrate in renal allograft rejection. Radiology 117, 731–733 (1975).

    Article  CAS  PubMed  Google Scholar 

  54. Solaric-George, E. A., Fletcher, J. W., Newton, W. T., Henry, R. E. & Donati, R. M. Renal accumulation of 99mTc sulfur colloid in transplant rejection. Radiology 111, 465–466 (1974).

    Article  CAS  PubMed  Google Scholar 

  55. George, E. A., Codd, J. E., Newton, W. T., Henry, R. E. & Donati, R. M. Further evaluation of 99mTc sulfur colloid accumulation in rejecting renal transplants in man and a canine model. Radiology 116, 121–126 (1975).

    Article  CAS  PubMed  Google Scholar 

  56. Liao, T. et al. Noninvasive quantification of intrarenal allograft C4d deposition with targeted ultrasound imaging. Am. J. Transpl. 19, 259–268 (2019).

    Article  CAS  Google Scholar 

  57. Martin-Comin, J. Kidney graft rejection studies with labeled platelets and lymphocytes. Int. J. Rad. Appl. Instrum. B 13, 173–181 (1986).

    Article  CAS  PubMed  Google Scholar 

  58. Lopes de Souza, S. A. et al. Diagnosis of renal allograft rejection and acute tubular necrosis by 99mTc-mononuclear leukocyte imaging. Transpl. Proc. 36, 2997–3001 (2004).

    Article  CAS  Google Scholar 

  59. Szablewski, L. Distribution of glucose transporters in renal diseases. J. Biomed. Sci. 24, 64 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Neuen, B. L. et al. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 7, 845–854 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Heerspink, H. J. L. et al. Dapagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 383, 1436–1446 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Rasul, S. et al. Response evaluation of SGLT2 inhibitor therapy in patients with type 2 diabetes mellitus using 18F-FDG PET/MRI. BMJ Open Diabetes Res. Care 8, e001135 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sala-Rabanal, M. et al. Revisiting the physiological roles of SGLTs and GLUTs using positron emission tomography in mice. J. Physiol. 594, 4425–4438 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mitsuoka, K. et al. Functional imaging of pharmacological action of SGLT2 inhibitor ipragliflozin via PET imaging using 11C-MDG. Pharmacol. Res. Perspect. 4, e00244 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Laustsen, C. et al. Hyperpolarized [1,4-13C]fumarate imaging detects microvascular complications and hypoxia mediated cell death in diabetic nephropathy. Sci. Rep. 10, 9650 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Qin, Z. et al. Molecular imaging of the glomerulus via mesangial cell uptake of radiolabeled tilmanocept. J. Nucl. Med. 60, 1325–1332 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Webster, A. C., Nagler, E. V., Morton, R. L. & Masson, P. Chronic kidney disease. Lancet 389, 1238–1252 (2017).

    Article  PubMed  Google Scholar 

  68. GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 395, 709–733 (2020).

    Article  Google Scholar 

  69. Ku, E., Lee, B. J., Wei, J. & Weir, M. R. Hypertension in CKD: Core Curriculum 2019. Am. J. Kidney Dis. 74, 120–131 (2019).

    Article  PubMed  Google Scholar 

  70. Ismail, B. et al. Decreased renal AT1 receptor binding in rats after subtotal nephrectomy: PET study with [18F]FPyKYNE-losartan. EJNMMI Res. 6, 55 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Ismail, B. et al. Treatment with enalapril and not diltiazem ameliorated progression of chronic kidney disease in rats, and normalized renal AT1 receptor expression as measured with PET imaging. PLoS ONE 12, e0177451 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Baues, M. et al. Fibrosis imaging: current concepts and future directions. Adv. Drug Deliv. Rev. 121, 9–26 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. van den Borne, S. W. et al. Molecular imaging of interstitial alterations in remodeling myocardium after myocardial infarction. J. Am. Coll. Cardiol. 52, 2017–2028 (2008).

    Article  PubMed  CAS  Google Scholar 

  74. Chen, D. L., Schiebler, M. L., Goo, J. M. & van Beek, E. J. R. PET imaging approaches for inflammatory lung diseases: current concepts and future directions. Eur. J. Radiol. 86, 371–376 (2017).

    Article  PubMed  Google Scholar 

  75. Makowski, M. R. et al. Assessment of atherosclerotic plaque burden with an elastin-specific magnetic resonance contrast agent. Nat. Med. 17, 383–388 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Ehling, J. et al. Elastin-based molecular MRI of liver fibrosis. Hepatology 58, 1517–1518 (2013).

    Article  PubMed  Google Scholar 

  77. Sun, Q. et al. Elastin imaging enables noninvasive staging and treatment monitoring of kidney fibrosis. Sci. Transl Med. 1, eaat4865 (2019).

    Article  CAS  Google Scholar 

  78. Sanders, H. M. et al. The binding of CNA35 contrast agents to collagen fibrils. Chem. Commun. 47, 1503–1505 (2011).

    Article  CAS  Google Scholar 

  79. Megens, R. T. et al. Imaging collagen in intact viable healthy and atherosclerotic arteries using fluorescently labeled CNA35 and two-photon laser scanning microscopy. Mol. Imaging 6, 247–260 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Baues, M. et al. A collagen-binding protein enables molecular imaging of kidney fibrosis in vivo. Kidney Int. 97, 609–614 (2020).

    Article  CAS  PubMed  Google Scholar 

  81. Klinkhammer, B. M., Goldschmeding, R., Floege, J. & Boor, P. Treatment of renal fibrosis-turning challenges into opportunities. Adv. Chronic Kidney Dis. 24, 117–129 (2017).

    Article  PubMed  Google Scholar 

  82. Ak, I. & Can, C. F-18 FDG PET in detecting renal cell carcinoma. Acta Radiol. 46, 895–899 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Khandani, A. H., Cowey, C. L., Moore, D. T., Gohil, H. & Rathmell, W. K. Primary renal cell carcinoma: relationship between 18F-FDG uptake and response to neoadjuvant sorafenib. Nucl. Med. Commun. 33, 967–973 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Tabei, T. et al. Early assessment with 18F-2-fluoro-2-deoxyglucose positron emission tomography/computed tomography to predict short-term outcome in clear cell renal carcinoma treated with nivolumab. BMC Cancer 19, 298 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Nakaigawa, N. et al. FDG PET/CT as a prognostic biomarker in the era of molecular-targeting therapies: max SUVmax predicts survival of patients with advanced renal cell carcinoma. BMC Cancer 16, 67 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Minamimoto, R., Barkhodari, A., Harshman, L., Srinivas, S. & Quon, A. Prognostic value of quantitative metabolic metrics on baseline pre-sunitinib FDG PET/CT in advanced renal cell carcinoma. PLoS ONE 11, e0153321 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Vercellino, L. et al. 18F-FDG PET/CT imaging for an early assessment of response to sunitinib in metastatic renal carcinoma: preliminary study. Cancer Biother Radiopharm. 24, 137–144 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Kelly-Morland, C. et al. Evaluation of treatment response and resistance in metastatic renal cell cancer (mRCC) using integrated 18F-Fluorodeoxyglucose (18F-FDG) positron emission tomography/magnetic resonance imaging (PET/MRI); The REMAP study. BMC Cancer 17, 392 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Chen, J. L. et al. FDG-PET as a predictive biomarker for therapy with everolimus in metastatic renal cell cancer. Cancer Med. 2, 545–552 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Fendler, W. P. et al. 68Ga-PSMA PET/CT: joint EANM and SNMMI procedure guideline for prostate cancer imaging: version 1.0. Eur. J. Nucl. Med. Mol. Imaging 44, 1014–1024 (2017).

    Article  PubMed  Google Scholar 

  91. Kratochwil, C. et al. EANM procedure guidelines for radionuclide therapy with 177Lu-labelled PSMA-ligands (177Lu-PSMA-RLT). Eur. J. Nucl. Med. Mol. Imaging 46, 2536–2544 (2019).

    Article  PubMed  Google Scholar 

  92. Beheshti, M. et al. Multiphasic 68Ga-PSMA PET/CT in the detection of early recurrence in prostate cancer patients with a PSA level of less than 1 ng/mL: a prospective study of 135 patients. J. Nucl. Med. 61, 1484–1490 (2020).

    Article  CAS  PubMed  Google Scholar 

  93. Endepols, H. et al. In vivo molecular imaging of glutamate carboxypeptidase II expression in re-endothelialisation after percutaneous balloon denudation in a rat model. Sci. Rep. 8, 7411 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Whitaker, H. C. et al. N-acetyl-L-aspartyl-L-glutamate peptidase-like 2 is overexpressed in cancer and promotes a pro-migratory and pro-metastatic phenotype. Oncogene 33, 5274–5287 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Morgenroth, A. et al. Targeting of prostate-specific membrane antigen for radio-ligand therapy of triple-negative breast cancer. Breast Cancer Res. 21, 116 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Siva, S. et al. Expanding the role of small-molecule PSMA ligands beyond PET staging of prostate cancer. Nat. Rev. Urol. 17, 107–118 (2020).

    Article  PubMed  Google Scholar 

  97. Rowe, S. P. et al. Imaging of metastatic clear cell renal cell carcinoma with PSMA-targeted 18F-DCFPyL PET/CT. Ann. Nucl. Med. 29, 877–882 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chen, Y. et al. 2-(3-{1-Carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pen tanedioic acid, [18F]DCFPyL, a PSMA-based PET imaging agent for prostate cancer. Clin. Cancer Res. 17, 7645–7653 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Meyer, A. R. et al. Improved identification of patients with oligometastatic clear cell renal cell carcinoma with PSMA-targeted 18F-DCFPyL PET/CT. Ann. Nucl. Med. 33, 617–623 (2019).

    Article  PubMed  Google Scholar 

  100. Yin, Y. et al. Inconsistent detection of sites of metastatic non-clear cell renal cell carcinoma with PSMA-targeted [18F]DCFPyL PET/CT. Mol. Imaging Biol. 21, 567–573 (2019).

    Article  PubMed  Google Scholar 

  101. Sawicki, L. M. et al. Diagnostic potential of PET/CT using a 68Ga-labelled prostate-specific membrane antigen ligand in whole-body staging of renal cell carcinoma: initial experience. Eur. J. Nucl. Med. Mol. Imaging 44, 102–107 (2017).

    Article  CAS  PubMed  Google Scholar 

  102. Valls, L. et al. Early response monitoring of receptor tyrosine kinase inhibitor therapy in metastatic renal cell carcinoma using [F-18]fluorothymidine-positron emission tomography-magnetic resonance. Semin. Roentgenol. 49, 238–241 (2014).

    Article  PubMed  Google Scholar 

  103. Ukon, N. et al. Dynamic PET evaluation of elevated FLT level after sorafenib treatment in mice bearing human renal cell carcinoma xenograft. EJNMMI Res. 6, 90 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Wong, P. K. et al. In vivo imaging of cellular proliferation in renal cell carcinoma using 18F-fluorothymidine PET. Asia Ocean. J. Nucl. Med. Biol. 2, 3–11 (2014).

    PubMed  PubMed Central  Google Scholar 

  105. Stillebroer, A. B., Mulders, P. F., Boerman, O. C., Oyen, W. J. & Oosterwijk, E. Carbonic anhydrase IX in renal cell carcinoma: implications for prognosis, diagnosis, and therapy. Eur. Urol. 58, 75–83 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Pastorek, J. & Pastorekova, S. Hypoxia-induced carbonic anhydrase IX as a target for cancer therapy: from biology to clinical use. Semin. Cancer Biol. 31, 52–64 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Oosterwijk, E. et al. Antibody localization in human renal cell carcinoma: a phase I study of monoclonal antibody G250. J. Clin. Oncol. 11, 738–750 (1993).

    Article  CAS  PubMed  Google Scholar 

  108. Divgi, C. R. et al. Phase I/II radioimmunotherapy trial with iodine-131-labeled monoclonal antibody G250 in metastatic renal cell carcinoma. Clin. Cancer Res. 4, 2729–2739 (1998).

    CAS  PubMed  Google Scholar 

  109. Brouwers, A. H. et al. 131I-cG250 monoclonal antibody immunoscintigraphy versus [18F]FDG-PET imaging in patients with metastatic renal cell carcinoma: a comparative study. Nucl. Med. Commun. 23, 229–236 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Brouwers, A. H. et al. Targeting of metastatic renal cell carcinoma with the chimeric monoclonal antibody G250 labeled with 131I or 111In: an intrapatient comparison. Clin. Cancer Res. 9, 3953S–3960S (2003).

    CAS  PubMed  Google Scholar 

  111. Steffens, M. G. et al. Targeting of renal cell carcinoma with iodine-131-labeled chimeric monoclonal antibody G250. J. Clin. Oncol. 15, 1529–1537 (1997).

    Article  CAS  PubMed  Google Scholar 

  112. Divgi, C. R. et al. Positron emission tomography/computed tomography identification of clear cell renal cell carcinoma: results from the REDECT trial. J. Clin. Oncol. 31, 187–194 (2013).

    Article  PubMed  Google Scholar 

  113. Pryma, D. A. et al. Correlation of in vivo and in vitro measures of carbonic anhydrase IX antigen expression in renal masses using antibody 124I-cG250. J. Nucl. Med. 52, 535–540 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Yu, Z. et al. Anti-G250 nanobody-functionalized nanobubbles targeting renal cell carcinoma cells for ultrasound molecular imaging. Nanotechnology 31, 205101 (2020).

    Article  CAS  PubMed  Google Scholar 

  115. Turkbey, B. et al. PET/CT imaging of renal cell carcinoma with 18F-VM4-037: a phase II pilot study. Abdom. Radiol. 41, 109–118 (2016).

    Article  Google Scholar 

  116. Garousi, J. et al. Comparative evaluation of affibody molecules for radionuclide imaging of in vivo expression of carbonic anhydrase IX. Mol. Pharm. 13, 3676–3687 (2016).

    Article  CAS  PubMed  Google Scholar 

  117. Yang, X. et al. Imaging of carbonic anhydrase IX with an 111In-labeled dual-motif inhibitor. Oncotarget 6, 33733–33742 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Minn, I. et al. [64Cu]XYIMSR-06: a dual-motif CAIX ligand for PET imaging of clear cell renal cell carcinoma. Oncotarget 7, 56471–56479 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Oosting, S. F. et al. 89Zr-bevacizumab PET visualizes heterogeneous tracer accumulation in tumor lesions of renal cell carcinoma patients and differential effects of antiangiogenic treatment. J. Nucl. Med. 56, 63–69 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. van Es, S. C. et al. 89Zr-Bevacizumab PET: potential early indicator of everolimus efficacy in patients with metastatic renal cell carcinoma. J. Nucl. Med. 58, 905–910 (2017).

    Article  PubMed  CAS  Google Scholar 

  121. Smeenge, M. et al. First-in-human ultrasound molecular imaging with a VEGFR2-specific ultrasound molecular contrast agent (BR55) in prostate cancer: a safety and feasibility pilot study. Invest. Radiol. 52, 419–427 (2017).

    Article  CAS  PubMed  Google Scholar 

  122. Rojas, J. D. et al. Ultrasound molecular imaging of VEGFR-2 in clear-cell renal cell carcinoma tracks disease response to antiangiogenic and notch-inhibition therapy. Theranostics 8, 141–155 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wei, S. et al. Targeted contrast-enhanced ultrasound imaging of angiogenesis in an orthotopic mouse tumor model of renal carcinoma. Ultrasound Med. Biol. 40, 1250–1259 (2014).

    Article  PubMed  Google Scholar 

  124. Mena, E. et al. [18F]fluciclatide in the in vivo evaluation of human melanoma and renal tumors expressing alphavbeta 3 and alpha vbeta 5 integrins. Eur. J. Nucl. Med. Mol. Imaging 41, 1879–1888 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Vento, J. et al. PD-L1 detection using 89Zr-atezolizumab immuno-PET in renal cell carcinoma tumorgrafts from a patient with favorable nivolumab response. J. Immunother. Cancer 7, 144 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Bensch, F. et al. 89Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat. Med. 24, 1852–1858 (2018).

    Article  CAS  PubMed  Google Scholar 

  127. Mao, W. et al. Intravoxel incoherent motion diffusion-weighted imaging for the assessment of renal fibrosis of chronic kidney disease: a preliminary study. Magn. Reson. Imaging 47, 118–124 (2018).

    Article  PubMed  Google Scholar 

  128. Poynton, C. B. et al. Intravoxel incoherent motion analysis of renal allograft diffusion with clinical and histopathological correlation in pediatric kidney transplant patients: a preliminary cross-sectional observational study. Pediatr. Transplant. 21, e12996 (2017).

    Article  Google Scholar 

  129. Ong, E. et al. Modelling kidney disease using ontology: insights from the Kidney Precision Medicine Project. Nat. Rev. Nephrol. 16, 686–696 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Kuppe, C. et al. Decoding myofibroblast origins in human kidney fibrosis. Nature 589, 281–286 (2021).

    Article  CAS  PubMed  Google Scholar 

  131. Smith, A. et al. Detecting proteomic indicators to distinguish diabetic nephropathy from hypertensive nephrosclerosis by integrating matrix-assisted laser desorption/ionization mass spectrometry imaging with high-mass accuracy mass spectrometry. Kidney Blood Press. Res. 45, 233–248 (2020).

    Article  CAS  PubMed  Google Scholar 

  132. Ivanova, M. et al. Matrix-assisted laser desorption/ionization mass spectrometry imaging to uncover protein alterations associated with the progression of IgA nephropathy. Virchows Arch. 476, 903–914 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. Smith, A. et al. High spatial resolution MALDI-MS imaging in the study of membranous nephropathy. Proteom. Clin. Appl. 13, e1800016 (2019).

    Article  CAS  Google Scholar 

  134. Smith, A. et al. α-1-Antitrypsin detected by MALDI imaging in the study of glomerulonephritis: its relevance in chronic kidney disease progression. Proteomics 16, 1759–1766 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Abdelmoula, W. M. et al. Automatic 3D nonlinear registration of mass spectrometry imaging and magnetic resonance imaging data. Anal. Chem. 91, 6206–6216 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Beck, L. H. Jr. et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N. Engl. J. Med. 361, 11–21 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Rinschen, M. M. & Saez-Rodriguez, J. The tissue proteome in the multi-omic landscape of kidney disease. Nat. Rev. Nephrol. 17, 205–219 (2021).

    Article  CAS  PubMed  Google Scholar 

  138. Du, B., Yu, M. & Zheng, J. Transport and interactions of nanoparticles in the kidneys. Nat. Rev. Mater. 3, 358–374 (2018).

    Article  Google Scholar 

  139. Bennett, K. M. et al. Use of cationized ferritin nanoparticles to measure renal glomerular microstructure with MRI. Methods Mol. Biol. 1397, 67–79 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. Choi, C. H., Zuckerman, J. E., Webster, P. & Davis, M. E. Targeting kidney mesangium by nanoparticles of defined size. Proc. Natl Acad. Sci. USA 108, 6656–6661 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Williams, R. M. et al. Selective nanoparticle targeting of the renal tubules. Hypertension 71, 87–94 (2018).

    Article  CAS  PubMed  Google Scholar 

  142. Ordikhani, F. et al. Selective trafficking of light chain-conjugated nanoparticles to the kidney and renal cell carcinoma. Nano Today 35, 100990 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kiessling, F., Mertens, M. E., Grimm, J. & Lammers, T. Nanoparticles for imaging: top or flop? Radiology 273, 10–28 (2014).

    Article  PubMed  Google Scholar 

  144. Ronco, C., Bellomo, R. & Kellum, J. A. Acute kidney injury. Lancet 394, 1949–1964 (2019).

    Article  CAS  PubMed  Google Scholar 

  145. Tesch, G. H. Review: serum and urine biomarkers of kidney disease: a pathophysiological perspective. Nephrology 15, 609–616 (2010).

    Article  CAS  PubMed  Google Scholar 

  146. Papasotiriou, M. et al. Serum and urine markers of collagen degradation reflect renal fibrosis in experimental kidney diseases. Nephrol. Dial. Transpl. 30, 1112–1121 (2015).

    Article  CAS  Google Scholar 

  147. Genovese, F. et al. Turnover of type III collagen reflects disease severity and is associated with progression and microinflammation in patients with IgA nephropathy. Nephrol. Dial. Transpl. 31, 472–479 (2016).

    Article  CAS  Google Scholar 

  148. Park, U. J. et al. Use of early postoperative MAG3 renal scan to predict long-term outcomes of renal transplants. Exp. Clin. Transpl. 11, 118–121 (2013).

    Article  Google Scholar 

  149. Pijl, J. P., Kwee, T. C., Slart, R. & Glaudemans, A. FDG-PET/CT for diagnosis of cyst infection in autosomal dominant polycystic kidney disease. Clin. Transl. Imaging 6, 61–67 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Salaman, J. R. & Blandy, J. P. The use of radioactive fibrinogen as a means for detecting rejection of human renal transplants. Br. J. Surg. 57, 855 (1970).

    CAS  PubMed  Google Scholar 

  151. Reuter, S. et al. Potential of noninvasive serial assessment of acute renal allograft rejection by 18F-FDG PET to monitor treatment efficiency. J. Nucl. Med. 51, 1644–1652 (2010).

    Article  PubMed  Google Scholar 

  152. Reuter, S. et al. Non-invasive imaging of acute renal allograft rejection in rats using small animal F-FDG-PET. PLoS ONE 4, e5296 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Grabner, A. et al. Non-invasive imaging of acute allograft rejection after rat renal transplantation using 18F-FDG PET. J. Vis. Exp. 28, e4240 (2013).

    Google Scholar 

Download references

Acknowledgements

This work was funded by the German Research Foundation (DFG; SFB/TRR57 P25&P33, SFB/TRR219 Project-ID 322900939, BO3755/13-1 Project-ID 454024652, Research Training Group 331065168), the German Federal Ministry of Education and Research (BMBF: STOP-FSGS-01GM1901A), the German Federal Ministry of Economic Affairs and Energy (BMWi: EMPAIA project), the Medical Faculty of the RWTH Aachen (START 109/20), the European Research Council (ERC: CoG-864121 Meta-Targeting and 101001791 AIM.imaging.CKD), the ITN INTRICARE of European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska Curie (grant 722609).

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to discussions of the manuscript content. B.M.K. researched the data for the article and wrote the first draft of the manuscript. T.L., F.M.M., F.K., J.F. and P.B. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Peter Boor.

Ethics declarations

Competing interests

F.M.M. is an advisory board member for Advanced Accelerator Applications/Novartis and Bayer, holds speaker positions at Siemens, GE Healthcare and Bayer, and receives institutional grants from GE Healthcare and Nanomab. F.K. consults for Merck Darmstadt, holds patents and has running patent applications with Bayer, Roche and Visualsonics, has stock options for Molecular Targeting Inc. and co-owns InVivoContrast GmbH. The remaining authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Nephrology thanks A. Smith, L.J. Zhang, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Nanobodies

Antibody fragments in the form of a single monomeric variable antibody domain; also known as single-domain antibodies.

Aptamers

Molecules (DNA or RNA oligonucleotides) that bind with high affinity to a target molecule.

Antibody- or peptide-functionalized microbubbles

Gas-filled microbubbles with a surface that is functionalized with antibodies or peptides as targeting ligands for molecular ultrasound imaging.

Extraction efficiency

A metric used to assess the elimination of an agent from the blood by comparing its arterial and venous concentrations.

Banff score

An international consensus classification for the reporting of biopsy findings from solid organ transplants.

Standardized uptake value

A semi-quantitative measure commonly used in PET imaging for nuclide enrichment that takes into account nuclide decay, administered dose and patient weight.

Mean transit time

The average time required for a tracer to travel through a tissue.

Time–activity curve

A graph in which radioactivity is plotted against time to display the kinetics of a tracer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klinkhammer, B.M., Lammers, T., Mottaghy, F.M. et al. Non-invasive molecular imaging of kidney diseases. Nat Rev Nephrol 17, 688–703 (2021). https://doi.org/10.1038/s41581-021-00440-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-021-00440-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing