Skip to main content
Log in

Evolution of Electronic Structure of GdTi0.05MnxFe0.95– xSi Compounds According to Band Calculations and Optical Investigations

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The electronic structure and optical properties of intermetallic compounds GdTi0.05MnxFe0.95 – xSi (x = 0, 0.4, 0.6, 0.95) have been investigated in this work. Spin-polarized densities of electronic states and optical conductivity spectra have been calculated by the DFT + U method, taking strong electron correlations in the 4f shell of Gd into account. The optical properties of these materials in the energy range 0.078–4.6 eV have been measured by the ellipsometric method. The nature of the quantized light absorption has been discussed, and a comparison of the experimental and theoretical spectra of the interband optical conductivity has been used. It has been shown that the change in the optical properties of the compounds when iron is substituted for manganese can be interpreted qualitatively based on the calculations of the densities of electronic states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. S. Gupta and K. G. Suresh, “Review on magnetic and related properties of RTX compounds,” J. Alloys Compd. 618, 562–606 (2015).

    Article  CAS  Google Scholar 

  2. Z. Hu and S. Bao-Gen, “Magnetocaloric effects in RTX intermetallic compounds (R = Gd–Tm, T = Fe–Cu and Pd, X = Al and Si),” Chin. Phys. B 24, No. 12, 127504 (2015).

    Article  Google Scholar 

  3. R. Welter, G. Venturini, and B. Malaman, “Magnetic properties of RFeSi (R = La–Sm, Gd–Dy) from susceptibility measurements and neutron diffraction studies,” J. Alloys Compd. 189, No. 1, 49–58 (1992).

    Article  CAS  Google Scholar 

  4. M. Napoletano, F. Canepa, P. Manfrinetti, and F. Merlo, “Magnetic properties and the magnetocaloric effect in the intermetallic compound GdFeSi,” J. Mater. Chem. 10, 1663–1665 (2000).

    Article  CAS  Google Scholar 

  5. P. Wlodarczyk, L. Hawelek, P. Zackiewicz, Roy T. Rebeda, A. Chrobak, M. Kaminska, A. Kolano-Burian, and J. Szade, “Characterization of magnetocaloric effect, magnetic ordering and electronic structure in the GdFe1 – xCoxSi intermetallic compounds,” Mater. Chem. Phys. 162, 273–278 (2015).

    Article  CAS  Google Scholar 

  6. R. Welter, G. Venturini, B. Malaman, and B. Ressouche, “Crystallographic data and magnetic properties of new RTX compounds (R = La–Sm, Gd; T = Ru, Os; X = Si, Ge). Magnetic structure of NdRuSi,” J. Alloys Compd. 202, No. 1–2, 165–172 (1993).

    Article  CAS  Google Scholar 

  7. B. Chevalier, M. Duttine, and A. Wattiaux, “Influence of hydrogenation and mechanical grinding on the structural and ferromagnetic properties of GdFeSi,” Z. Naturforsch. 71, No. 5, 419–424 (2016).

    Article  CAS  Google Scholar 

  8. S. A. Nikitin, T. I. Ivanova, and I. A. Tskhadadze, “Magnetic properties of GdMnxFe1 – xSi intermetfllic compounds,” Acta Phys. Pol., A 91, No. 2, 463–466 (1997).

    Article  CAS  Google Scholar 

  9. S. A. Nikitin, T. I. Ivanova, I. A. Tskhadadsze, K. P. Skokov, and I. V. Telegina, “Magnetic anisotropy and magnetic properties of RTSi (R = Gd, Y; T = Mn, Fe) compounds,” J. Alloys Compd. 280, Nos. 1–2, 16–19 (1998).

    Article  CAS  Google Scholar 

  10. K. A. Gschneidner and V. K. Pecharsky, “The influence of magnetic field on the thermal properties of solids,” Mater. Sci. Eng., A 287, No. 2, 301–310 (2000).

    Article  Google Scholar 

  11. I. A. Ovtchenkova, S. A. Nikitin, T. I. Ivanova, G. A. Tskhadadze, Yu. V. Skourski, W. Suski, and V. I. Nizhankovski, “Magnetic ordering and magnetic transitions in GdMnSi compound,” J. Alloys Compd. 451, Nos. 1–2, 450–453 (2008).

    Article  CAS  Google Scholar 

  12. A. Kuchin, S. Platonov, V. Gaviko, and M. Yakovleva, “Magnetic and structural properties of GdFe1 – xTixSi,” IEEE Magn. Lett. 10, 2509204 (2019).

    Article  CAS  Google Scholar 

  13. V. I. Anisimov, A. V. Lukoyanov, and S. L. Skornyakov, “Electronic structure and magnetic properties of strongly correlated transition metal compounds,” Phys. Met. Metallogr. 119, No. 13, 1254–1258 (2018).

    Article  CAS  Google Scholar 

  14. X. B. Liu and Z. Altounian, “First-principles calculation on the Curie temperature of GdFeSi,” J. Appl. Phys. 102, No. 9, 09E103 (2010).

  15. S. Talakesh and Z. Nourbakhsh, “The Density functional study of structural, electronic, magnetic and thermodynamic properties of XFeSi (X = Gd, Tb, La) and GdRuSi compounds,” J. Supercond. Nov. Magn. 30, 2143–2158 (2017).

    Article  CAS  Google Scholar 

  16. E. D. Baglasov and A. V. Lukoyanov, “Electronic structure of intermetallic antiferromagnet GdNiGe,” Symmetry 11, 737 (2019).

    Article  CAS  Google Scholar 

  17. Yu. V. Knyazev, A. V. Lukoyanov, Yu. I. Kuz’min, R. D. Mukhachev, S. Gupta, and K. G. Suresh, “Electronic states and optical spectra of ErSn1.1Ge0.9 and TmSn1.1Ge0.9 compounds,” Phys. Met. Metallogr. 121, 537–542 (2020).

    Article  CAS  Google Scholar 

  18. V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, “First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA + U method,” J. Phys.: Condens. Matter 9, No. 4, 767–808 (1997).

    CAS  Google Scholar 

  19. P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas, Jr., R. A. Di Stasio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H. -Y. Ko, A. Kokalj, E. Kucukbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H. -V. Nguyen, N. L. Nguyen, H.-V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, and S. Baroni, “Advanced capabilities for materials modelling with Quantum ESPRESSO,” J. Phys.: Condens. Matter 29, No. 18, 465901 (2017).

    CAS  Google Scholar 

  20. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, No. 18, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  21. M. Topsakal and R. M. Wentzcovitch, “Accurate projected augmented wave (PAW) datasets for rare-earth elements (RE = La–Lu),” Comput. Mater. Sci. 95, 263–270 (2014).

    Article  CAS  Google Scholar 

  22. S. Gupta, K. G. Suresh, and A. V. Lukoyanov, “Effect of complex magnetic structure on the magnetocaloric and magneto-transport properties in GdCuSi,” J. Mater. Sci. 50, 5723–5728 (2015).

    Article  CAS  Google Scholar 

  23. I. I. Mazin, D. J. Singh, and C. Ambrosch-Draxl, “Transport, optical, and electronic properties of the half-metal CrO2,” Phys. Rev. B 59, No. 1, 411–418 (1999).

    Article  CAS  Google Scholar 

Download references

Funding

The results presented in the Electronic Structure Calculation section of this work were supported by the Russian Science Foundation (project no. 18-72-10098). The experimental optical results presented in the Results and discussion section were supported by the Ministry of Science and Higher Education of the Russian Federation (themes “Electron”, No. АААА-А18-118020190098-5 and “Magnite”, No. АААА-А18-118020290129-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Lukoyanov.

Additional information

Translated by T. Gapontseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knyazev, Y.V., Gramateeva, L.N., Lukoyanov, A.V. et al. Evolution of Electronic Structure of GdTi0.05MnxFe0.95– xSi Compounds According to Band Calculations and Optical Investigations. Phys. Metals Metallogr. 122, 472–477 (2021). https://doi.org/10.1134/S0031918X21050070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21050070

Keywords:

Navigation