Skip to main content
Log in

Effect of the Repetitive Corrugation and Straightening on the Microstructure and Mechanical Properties of a 3003 Aluminum Alloy

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

A novel repetitive corrugation and straightening (RCS) die geometry was evaluated in terms of its mechanical properties and microstructural modifications. An annealed 3003 aluminum alloy sheet was processed up to 6 RCS passes at room temperature, showing a significant improvement in yield strength and hardness. Changes in surface profile values were obtained along different stages of the repetitive process; this showed a clear correlation between the higher strained region and the maxima of hardness values. Moreover, differences in roughness were associated with real contact area between material and corrugating die sections. Local strain distribution generated during the process was determined by kernel average misorientation (KAM) and was consistent with microhardness mapping results. Orientation image mapping showed that grains, with the normals parallel to 〈111〉, activate dislocation arrangement and grain fragmentation process prior to other main directions. In spite of mechanical properties improvement, initial texture components were maintained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. I. Sabirov, M. Y. Murashkin, and R. Z. Valiev, “Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development,” Mater. Sci. Eng., A 560, 1–24 (2013).

    Article  CAS  Google Scholar 

  2. T. G. Langdon, “The processing of ultrafine-grained materials through the application of severe plastic deformation,” J. Mater. Sci. 42, 3388–3397 (2007).

    Article  CAS  Google Scholar 

  3. R. Z. Valiev, M. Y. Murashkin, A. V. Ganeev, and N. A. Enikeev, “Superstrength of nanostructured metals and alloys produced by severe plastic deformation,” Phys. Met. Metallogr. 113, 1193–1201 (2012).

    Article  Google Scholar 

  4. V. M. Segal, “Severe plastic deformation: simple shear versus pure shear,” Mater. Sci. Eng., A 338, 331–344 (2002).

    Article  Google Scholar 

  5. Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, and T. G. Langdon, “Principle of equal-channel angular pressing for the processing of ultra-fine grained materials,” Scr. Mater. 35, 143–146 (1996).

    Article  CAS  Google Scholar 

  6. R. Z. Valiev and T. G. Langdon, “Principles of equal-channel angular pressing as a processing tool for grain refinement,” Prog. Mater. Sci. 51, 881–981 (2006).

    Article  CAS  Google Scholar 

  7. J. Zhang, N. Gao, and M. J. Starink, “Microstructure development and hardening during high pressure torsion of commercially pure aluminum: Strain reversal experiments and a dislocation based model,” Mater. Sci. Eng., A 528, 2581–2591 (2011).

    Article  CAS  Google Scholar 

  8. G. Liu, J. Gu, S. Ni, Y. Liu, and M. Song, “Microstructural evolution of Cu–Al alloys subjected to multi-axial compression,” Mater. Charact. 103, 107–119 (2015).

    Article  CAS  Google Scholar 

  9. K. Hajizadeh, S. Ejtemaei, B. Eghbali, and K. J. Kurzydlowski, “Microstructure and mechanical properties of 1050 aluminum after the combined processes of constrained groove pressing and cold rolling,” Phys. Met. Metallogr. 121, 72–77 (2020).

    Article  CAS  Google Scholar 

  10. A. A. Tohidi, M. Ketabchi, and A. Hasannia, “Nanograined Ti–Nb microalloy steel achieved by Accumulative Roll Bonding (ARB) process,” Mater. Sci. Eng., A 577, 43–47 (2013).

    Article  CAS  Google Scholar 

  11. J. Huang, Y. T. Zhu, D. J. Alexander, X. Liao, T. C. Lowe, and R. J. Asaro, “Development of repetitive corrugation and straightening,” Mater. Sci. Eng., A 371, 35–39 (2004).

    Article  CAS  Google Scholar 

  12. J. Y. Huang, Y. T. Zhu, H. Jiang, and T. C. Lowe, “Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening,” Acta Mater. 49, 1497–1505 (2001).

    Article  CAS  Google Scholar 

  13. I. G. Brodova, E. V. Shorokhov, I. G. Shirinkina, I. N. Zhgilev, T. I. Yablonskikh, V. V. Astaf’ev, and O. V. Antonova, “Evolution of the structure formation during dynamic pressing of the AMts alloy,” Phys. Met. Metallogr. 105, 594–601 (2008).

    Article  Google Scholar 

  14. R. Pippan, F. Wetscher, M. Hafok, A. Vorhauer, and I. Sabirov, “The limits of refinement by severe plastic deformation,” Adv. Eng. Mater. 8, 1046–1056 (2006).

    Article  CAS  Google Scholar 

  15. I. E. Volokitina and A. V. Volokitin, “Evolution of the microstructure and mechanical properties of copper during the pressing–drawing process,” Phys. Met. Metallogr. 119, 917–921 (2018).

    Article  CAS  Google Scholar 

  16. G. H. Zahid, Y. Huang, and P. B. Prangnell, “Microstructure and texture evolution during annealing a cryogenic-SPD processed Al-alloy with a nanoscale lamellar HAGB grain structure,” Acta Mater. 57, 3509–3521 (2009).

    Article  CAS  Google Scholar 

  17. E. C. Moreno-Valle, I. Sabirov, M. T. Perez-Prado, M. Y. Murashkin, E. V. Bobruk, and R. Z. Valiev, “Effect of the grain refinement via severe plastic deformation on strength properties and deformation behavior of an Al6061 alloy at room and cryogenic temperatures,” Mater. Lett. 65, 2917–2919 (2011).

    Article  CAS  Google Scholar 

  18. D. B. Witkin and E. J. Lavernia, “Synthesis and mechanical behavior of nanostructured materials via cryomilling,” Prog. Mater. Sci. 51, 1–60 (2006).

    Article  CAS  Google Scholar 

  19. F. Khodabakhshi, M. Abbaszadeh, H. Eskandari, and S. R. Mohebpour, “Application of CGP-cross route process for microstructure refinement and mechanical properties improvement in steel sheets,” J. Manuf. Process. 15, 533–541 (2013).

    Article  Google Scholar 

  20. H. Lianxi, L. Yuping, W. Erde, and Y. Yang, “Ultrafine grained structure and mechanical properties of a LY12 Al alloy prepared by repetitive upsetting-extrusion,” Mater. Sci. Eng., A 422, 327–332 (2006).

    Article  CAS  Google Scholar 

  21. F. Khodabakhshi and A. P. Gerlich, “Accumulative fold-forging (AFF) as a novel severe plastic deformation process to fabricate a high strength ultra-fine grained layered aluminum alloy structure,” Mater. Charact. 136, 229–239 (2018).

    Article  CAS  Google Scholar 

  22. A. Shokuhfar and O. Nejadseyfi, “A comparison of the effects of severe plastic deformation and heat treatment on the tensile properties and impact toughness of aluminum alloy 6061,” Mater. Sci. Eng., A 594, 140–148 (2014).

    Article  CAS  Google Scholar 

  23. N. Thangapandian, S. B. Prabu, and K. A. Padmanabhan, “Effects of die profile on grain refinement in Al–Mg alloy processed by repetitive corrugation and straightening,” Mater. Sci. Eng., A 649, 229–238 (2016).

    Article  CAS  Google Scholar 

  24. N. Thangapandian, S. B. Prabu, and K. A. Padmanabhan, “On the role of experimental variables in the repetitive corrugation and straightening of an Al–Mg alloy,” Procedia Eng. 207, 1457–1462 (2017).

    Article  CAS  Google Scholar 

  25. X. Wu and Y. Zhu, “Heterogeneous materials: a new class of materials with unprecedented mechanical properties,” Mater. Res. Lett. 5, 527–532 (2017).

    Article  CAS  Google Scholar 

  26. A. Rosochowski, “Processing metals by severe plastic deformation,” Solid State Phenom. 101102, 13–22 (2005).

    Article  Google Scholar 

  27. F. Bachmann, R. Hielscher, and H. Schaeben, “Texture analysis with MTEX – free and open source software toolbox,” Solid State Phenom. 160, 63–68 (2010).

    Article  CAS  Google Scholar 

  28. T. Roisnel and J. Rodríquez-Carvajal, “WinPLOTR: A windows tool for powder diffraction pattern analysis,” Mater. Sci. Forum 378381, 118–123 (2001).

    Article  Google Scholar 

  29. S. S. Satheesh Kumar and T. Raghu, “Structural and mechanical behaviour of severe plastically deformed high purity aluminium sheets processed by constrained groove pressing technique,” Mater. Des. 57, 114–120 (2014).

    Article  CAS  Google Scholar 

  30. Y. Estrin and A. Vinogradov, “Extreme grain refinement by severe plastic deformation: A wealth of challenging science,” Acta Mater. 61, 782–817 (2013).

    Article  CAS  Google Scholar 

  31. C. Figueroa, R. Schouwenaars, V. Jacobo, A. Ortiz, R. Petrov, and L. Kestens, “Tribological and microstructural characterization of ultrafine layers induced by wear in ductile alloys,” Tribol. Online. 11, 389–395 (2016).

    Article  Google Scholar 

  32. J. Williams, Engineering Tribology (Cambridge University, Cambridge, 2005).

    Book  Google Scholar 

  33. C. Reyes-Ruiz, I. A. Figueroa, C. Braham, J. M. Cabrera, I. Alfonso, and G. Gonzalez, “Texture and lattice distortion study of an Al-6061-T6 alloy produced by ECAP,” Mater. Trans. 56, 1781–1786 (2015).

    Article  CAS  Google Scholar 

  34. W. Skrotzki, A. Eschke, B. Joni, T. Ungar, L. S. Toth, Y. Ivanisenko, and L. Kurmanaeva, “New experimental insight into the mechanisms of nanoplasticity,” Acta Mater. 61, 7271–7284 (2013).

    Article  CAS  Google Scholar 

  35. O. Renk, A. Hohenwarter, S. Wurster, and R. Pippan, “Direct evidence for grain boundary motion as the dominant restoration mechanism in the steady-state regime of extremely cold-rolled copper,” Acta Mater. 77, 401–410 (2014).

    Article  CAS  Google Scholar 

  36. J. Liu and J. G. Morris, “Recrystallization Textures of continuous cast AA 3015 alloy: Development of the P orientation {011} 〈566〉,” Metall. Mater. Trans. A 34, 2029–2032 (2003).

    Article  Google Scholar 

  37. W. X. Wang, M. Ma, H. L. Li, J. X. Zhang, and W. C. Liu, “Effect of preheat treatment on the texture evolution during cold rolling of AA 3003 aluminum alloy,” J. Mater. Eng. Perform. 24, 4283–4289 (2015).

    Article  CAS  Google Scholar 

  38. W. X. Wang, J. X. Zhang, Z. J. Wang, and W. C. Liu, “A comparative study of the transformation kinetics of recrystallization texture of CC and DC 3003 aluminum alloys,” Mater. Charact. 141, 412–422 (2018).

    Article  CAS  Google Scholar 

  39. I. J. Beyerlein and L. S. Tóth, “Texture evolution in equal-channel angular extrusion,” Prog. Mater. Sci. 54, 427–510 (2009).

    Article  CAS  Google Scholar 

  40. L. S. Tóth, “Texture evolution in severe plastic deformation by equal channel angular extrusion,” Adv. Eng. Mater. 5, 308–316 (2003).

    Article  Google Scholar 

  41. C. G. Figueroa, R. Schouwenaars, J. Cortés-Pérez, R. Petrov, and L. Kestens, “Ultrafine gradient microstructure induced by severe plastic deformation under sliding contact conditions in copper,” Mater. Charact. 138, 263–273 (2018).

    Article  CAS  Google Scholar 

  42. J. Jenix Rino, S. Balasivanandha Prabu, and K. A. Padmanabhan, “On the influence of repetitive corrugation and straightening on the microstructure and mechanical properties of AA 8090 Al–Li alloy,” Arch. Civ. Mech. Eng. 18, 280–290 (2018).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Reyes-Ruiz gratefully acknowledges to DGAPA for his postdoctoral fellowship. G. Gonzalez acknowledges the funding support by PAPIIT IN107917. Authors wish to thank technical support by E. Hernàndez-Mecinas, Adriana Tejeda, and Omar Novelo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Reyes-Ruiz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyes-Ruiz, C., Figueroa, C.G., González, G. et al. Effect of the Repetitive Corrugation and Straightening on the Microstructure and Mechanical Properties of a 3003 Aluminum Alloy. Phys. Metals Metallogr. 122, 504–514 (2021). https://doi.org/10.1134/S0031918X21050112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21050112

Keywords:

Navigation