Skip to main content
Log in

Magnetic and Transport Properties of Type-II Superconductors: Numerical Modeling and Experiment

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

This review is devoted to various experimental and theoretical studies of the magnetic and transport properties of type-II superconductors. The main interest is in the study of the behavior of the vortex system, its dynamics, and interaction with pinning centers: defects. Two widely used methods of numerical simulation of a vortex system are considered here: Monte Carlo and molecular dynamics. The effects investigated by these methods, such as various phase transitions in the vortex lattice, its melting, and inverse crystallization, are described. The existing models of a layered anisotropic high-temperature superconductor in a magnetic field perpendicular and inclined with respect to the superconducting layers are considered. Methods, actively studied and applied in practice for improving the current-carrying characteristics of a superconductor by introducing various nano- and microscopic artificial defects, including those with ferromagnetic ordering, are described. Various effects observed in composite (including multilayer) ferromagnet–superconductor structures, which are still of interest, are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig.12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.

Similar content being viewed by others

REFERENCES

  1. H. W. Weber, “Neutron irradiation effects in high-T single crystals,” Phys. C 185–189, 309–314 (1991).

    Article  Google Scholar 

  2. D. V. Kulikov, Yu. V. Trushin, F. M. Sauerzopf, M. Zehetmayer, and H. W. Weber, “Changes in the transition temperature after irradiation and annealing in single crystalline YBa2Cu3O7 – δ,” Phys. C 355, 245–250 (2001).

    Article  CAS  Google Scholar 

  3. A. Kujur, K. Asokan, and D. Behera, “The effect of 200 MeV Ag ions on the transport property of yttrium barium copper oxide/silver composite thin film,” Thin Solid Films 536, 256–260 (2013).

    Article  CAS  Google Scholar 

  4. N. M. Strickland, E. F. Talantsev, N. J. Long, J. A. Xia, S. D. Searle, and J. Kennedy, “Flux pinning by discontinuous columnar defects in 74 MeV Ag-irradiated YBa2Cu3O7 coated conductors,” Phys. C 469, 2060–2067 (2009).

    Article  CAS  Google Scholar 

  5. A. Kujur, K. Asokan, and D. Behera, “Critical current density enhancement by ion irradiation for thick YBa2Cu3O7 – δ films prepared by diffusion reaction technique,” Nucl. Instrum. Methods Phys. Res., Sect. B 343, 94–100 (2015).

    CAS  Google Scholar 

  6. G. Z. Li, M. Wang, and W. M. Yang, “Enhanced superconducting properties in infiltration processed Y–Ba–Cu–O single-grain superconductor with nano-sized pinning centers,” J. Alloys Compd. 649, 559–563 (2015).

    Article  CAS  Google Scholar 

  7. M. K. Ben Salem, M. A. Almessiere, A. L. Al-Otaibi, M. Ben Salem, and F. Ben Azzouz, “Effect of SiO2 nano-particles and nano-wires on microstructure and pinning properties of YBa2Cu3O7 – δ,” J. Alloys Compd. 657, 286–295 (2016).

    Article  CAS  Google Scholar 

  8. Sa F. M. Sauerzopf, H. P. Wiesinger, M. C. Frischher, T. Gerstenberg, and H. Gerstenberg, “Fast neutron irradiation and flux pinning in single crystalline high temperature superconductors,” Cryogenics 33, No. 1, 8–13 (1993).

    Article  Google Scholar 

  9. P. Sen, S. K. Bandyopadhyay, P. M. G. Nambissan, R. Ganguly, P. Barat, and P. Mukherjee, “The study of inter and intragranular pinning behavior of oxygen irradiated textured polycrystalline Bi2Sr2CaCu2O8 + δ and Bi1.84Pb0.34Sr1.91Ca2.03Cu3.06O10 + δ superconductors,” Phys. C 407, No. 1–2, 55–61 (2004).

    Article  CAS  Google Scholar 

  10. A. V. Troitskii, T. E. Demikhov, L. Kh. Antonova, S. A. Kuz’michev, V. A. Skuratov, V. K. Semina, and G. N. Mikhailova, “Effect of ion irradiation of the second-generation HTSC GdBa2Cu3O7 – x ribbons on the critical parameters of superconductor,” Phys. Met. Metallogr. 120, No. 2, 133–137 (2019).

    Article  CAS  Google Scholar 

  11. V. V. Val’kov and A. O. Zlotnikov, “Anomalous properties and coexistence of antiferromagnetism and superconductivity near a quantum critical point in rare-earth intermetallides,” J. Exp. Theor. Phys. 116, No. 5, 817–822 (2013).

    Article  CAS  Google Scholar 

  12. V. V. Val’kov and A. O. Zlotnikov, “Realization of the phase of coexistence of antiferromagnetism and superconductivity in heavy-fermionic intermetallic compounds,” Zh. Eksp. Teor. Fiz. 95, No. 7, 390–396 (2012).

    Google Scholar 

  13. A. Snezhko, T. Prozorov, and R. Prozorov, “Magnetic nanoparticles as efficient bulk pinning centers in type-II superconductors,” Phys. Rev. B 71, 024527(1–6) (2005).

  14. C. Huang, H. Yong, and Y. Zhou, “Effect of magnetic nanoparticles on the mechanical properties of type-II superconductors,” Acta Mech. Solida Sin. 27, No. 1, 65–72 (2014).

    Article  Google Scholar 

  15. T. H. Alden and J. D. Livingston, “Ferromagnetic particles in a type-II superconductor,” J. Appl. Phys. 37, 3551–3556 (1996).

    Article  Google Scholar 

  16. C. C. Koch and G. R. Love, “Superconductivity in niobium containing ferromagnetic gadolinium or paramagnetic yttrium dispersions,” J. Appl. Phys. 40, 3582–3587 (1969).

    Article  CAS  Google Scholar 

  17. V. A. Kashurnikov, I. A. Rudnev, M. E. Gracheva, and O. A. Nikitenko, “Phase transitions in a two-dimensional vortex system with defects: Monte Carlo simulation,” J. Exp. Theor. Phys. 90, No. 1, 173–182 (2000).

    Article  CAS  Google Scholar 

  18. M. E. Gracheva, V. A. Kashurnikov, and I. A. Rudnev, “Features of the melting dynamics of a vortex lattice in a high-Tc superconductor in the presence of pinning centers,” JETP Lett. 66, No. 4, 291–297 (1997).

    Article  Google Scholar 

  19. I. A. Rudnev, V. A. Kashurnikov, M. E. Gracheva, and O. A. Nikitenko, “Phase transitions in a two-dimensional vortex lattice with defects: Monte Carlo simulation,” Phys. C 332, 383–388 (2000).

    Article  CAS  Google Scholar 

  20. Yu. E. Lozovik and V. A. Mandelshtam, “Classical and quantum melting of a Coulomb cluster in a trap,” Phys. Lett. A 165, 469–472 (1992).

    Article  CAS  Google Scholar 

  21. Yu. E. Lozovik and E. A. Rakoch, “Two-dimensional microclusters of vortices: Shell structure and melting,” JETP Lett. 65, 282–288 (1997).

    Article  Google Scholar 

  22. I. A. Rudnev, V. A. Kashurnikov, M. E. Gracheva, and O. A. Nikitenko, “Phase transitions in a two dimensional vortex lattice with defects: Monte Carlo simulation,” Phys. C 332, Nos. 1–4, 383–388 (2000).

    Article  CAS  Google Scholar 

  23. V. A. Kashurnikov, I. A. Rudnev, and M. V. Zyubin, “Magnetization of two-dimensional superconductors with defects,” J. Exp. Theor. Phys. 94, 377–386 (2002).

    Article  CAS  Google Scholar 

  24. M. V. Zyubin, I. A. Rudnev, and V. A. Kashurnikov, “Ordered states and structural transitions in a system of Abrikosov vortices with periodic pinning,” J. Exp. Theor. Phys. 96, 1065–1077 (2003).

    Article  CAS  Google Scholar 

  25. M. V. Zyubin, I. A. Rudnev, and V. A. Kashurnikov, “Inverse crystallization of a system of Abrikosov vortices with periodic pinning,” JETP Lett. 76, No. 4, 227–230 (2002).

    Article  CAS  Google Scholar 

  26. D. S. Odintsov, I. A. Rudnev, and V. A. Kashurnikov, “Vortex system dynamics and energy losses in a current-carrying 2D superconducting wafer,” J. Exp. Theor. Phys. 130, 66–76 (2006).

    Article  CAS  Google Scholar 

  27. D. S. Odintsov, I. A. Rudnev, and V. A. Kashurnikov, “On the mechanisms of transport losses in high-temperature superconductors,” J. Exp. Theor. Phys. 105, 253–255 (2007).

    Article  CAS  Google Scholar 

  28. I. A. Rudnev, D. S. Odintsov, and V. A. Kashurnikov, “Critical current suppression in high-Tc superconductors and its dependence on the defects concentration,” Phys. Lett. A 372, 3934–3936 (2008).

    Article  CAS  Google Scholar 

  29. E. H. Brandt, “Ideal and distorted vortex lattice in bulk and film superconductors (Review),” Low Temp. Phys. 36, 2–12 (2010).

    Article  CAS  Google Scholar 

  30. A. Vagov, S. Wolf, M. D. Croitoru, and A. A. Shanenko, “Universal flux patterns and their interchange in superconductors between types I and II,” Commun. Phys. 3, 58 (2020).

    Article  Google Scholar 

  31. J. Valsecchi, J. S. White, M. Bartkowiak, W. Treime, Y. Kim, S. W. Lee, D. M. Gokhfeld, R. P. Harti, M. Morgano, M. Strobl, and C. Grünzweig, “Visualization of compensating currents in type-II/1 superconductor via high field cooling,” Appl. Phys. Lett. 116, 192602 (2020).

    Article  CAS  Google Scholar 

  32. A. A. Bykov, D. M. Gokhfeld, N. E. Savitskaya, K. Yu. Terentjev, S. I. Popkov, A. A. Mistonov, N. A. Grigoryeva, A. Zakhidov, and S. V. Grigoriev, “Flux pinning mechanisms and a vortex phase diagram of tin-based inverse opals,” Supercond. Sci. Technol. 32, 115004 (2019).

    Article  CAS  Google Scholar 

  33. A. W. Smith, H. M. Jaeger, T. F. Rosenbaum, A. M. Petrean, W. K. Kwok, and G. W. Crabtree, “Vortex flow and transverse flux screening at the Bose glass transition,” Phys. Rev. Lett. 84, No. 21, 4974 (2000).

    Article  CAS  Google Scholar 

  34. D. T. Fuchs, E. Zeldov, T. Tamegai, S. Ooi, M. Rappaport, and H. Shtrikman, “Possible new vortex matter phases in Bi2Sr2CaCu2O8,” Phys. Rev. Lett. 80, No. 22, 4971 (1998).

    Article  CAS  Google Scholar 

  35. A. L. Greer, “Too hot to melt,” Nature 44, 134 (2000).

    Article  CAS  Google Scholar 

  36. Y. Yeshurun, M. B. Salamon, K. V. Rao, and H. S. Chen, “Spin-glass-ferromagnetic critical line in amorphous Fe-Mn alloys,” Phys. Rev. Lett. 45, No. 16, 1366 (1980).

    Article  CAS  Google Scholar 

  37. N. Avraham, B. Khaykovich, Y. Myasoedov, M. Rappaport, H. Shtrikman, D. E. Feldman, T. Tamegai, P. H. Kesk, M. Lik, M. Konczykowski, K. van der Beek, and E. Zeldov, “‘Inverse’ melting of a vortex lattice,” Nature 411, 451 (2001).

    Article  CAS  Google Scholar 

  38. C. Reichhardt, C. J. Olson, and F. Nori, “Commensurate and incommensurate vortex states in superconductors with periodic pinning arrays,” Phys. Rev. B 57, No. 13, 7937 (1997).

    Article  Google Scholar 

  39. V. A. Kashurnikov, A. N. Maksimova, and I. A. Rudnev, “Magnetization reversal processes in layered high-temperature superconductors with ferromagnetic impurities,” Phys. Solid State 56, No. 5, 894–911 (2014).

    Article  CAS  Google Scholar 

  40. M. M. Mola, S. Hill, J. S. Brooks, and J. S. Qualls, “Quantum melting of the quasi-two-dimensional vortex lattice in κ-(ET)2Cu(NCS)2,” Phys. Rev. Lett. 86, No. 10, 2130 (2001).

    Article  CAS  Google Scholar 

  41. Yu. Eltsev and O. Rapp, “Flux lattice melting and nonlocal electrodynamics in YBa2Cu3O7 – δ single crystal in a magnetic field parallel to CuO2 layers,” Phys. Rev. B 60, No. 21, 14621 (1999).

    Article  CAS  Google Scholar 

  42. S. Ryu, M. Hellerqvist, S. Doniach, A. Kapitulnik, and D. Stroud, “Dynamical phase transition in a driven disordered vortex lattice,” Phys. Rev. Lett. 77, No. 25, 5114 (1996).

    Article  CAS  Google Scholar 

  43. S. Grundberg and J. Rammer, “Self-consistent theory of vortex dynamics in disordered superconductors,” Phys. Rev. B 61, No. 1, 699 (2000).

    Article  CAS  Google Scholar 

  44. D. Pal, D. Dasgupta, B. K. Sarma, S. Bhattacharya, S. Ramakrishnan, and A. K. Grover, “Amorphization of vortex matter and indication of a reentrant peak effect in YBa2Cu3O7 – δ,” Phys. Rev. B 62, No. 10, 6699 (2000).

    Article  CAS  Google Scholar 

  45. Y. Y. Goldschmidt, “Molecular dynamics of pancake vortices with realistic interactions: Observing the vortex lattice melting transition,” Phys. Rev. B 72, 064518 (2005).

    Article  CAS  Google Scholar 

  46. Y. Fily, E. Olive, and J. C. Soret, “Driven flux-line lattices in the presence of weak random columnar disorder: Finite-temperature behavior and dynamical melting of moving Bose glass,” Phys. Rev. B 79, 212504 (2009).

    Article  CAS  Google Scholar 

  47. H. Chaturvedi, N. Galliher, U. Dobramysl, M. Pleimling, and U. C. Tauber, “Dynamical regimes of vortex flow in type-II superconductors with parallel twin boundaries,” Eur. Phys. J. B 91, 294 (2018).

    Article  CAS  Google Scholar 

  48. A. Maniv, V. Zhuravlev, T. Maniv, O. Ofer, R. Rommel, J. Muller, and J. E. Sonier, “Partially ordered vortex lattices in the high-field low-temperature mixed state of quasi-two-dimensional organic superconductors,” Phys. Rev. B 91, 134506 (2015).

    Article  CAS  Google Scholar 

  49. R. G. Mints and A. L. Rakhmanov, Instabilities in Superconductors (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  50. J. Bardeen and M. J. Stephen, “Theory of the motion of vortices in superconductors,” Phys. Rev. Lett. 140, No. 4A, 1197 (1965).

    Google Scholar 

  51. V. V. Shmidt, Introduction to Superconductor Physiscs (MTsNMO, Moscow, 2000) [in Russian].

  52. H. Suhl, “Inertial mass of a moving fluxoid,” Phys. Rev. Lett. 14, No. 7, 226 (1965).

    Article  Google Scholar 

  53. E. M. Chudnovsky and A. B. Kuklov, “Inertial mass of the Abrikosov vortex,” Phys. Rev. Lett. 91, No. 6, 067004 (2003).

    Article  CAS  Google Scholar 

  54. Y. Yeshurun, A. P. Malozemoff, and A. Shaulov, “Magnetic relaxation in high-temperature superconductors,” Rev. Mod. Phys. 68, No. 3, 911 (1996).

    Article  CAS  Google Scholar 

  55. M. Tinkham, Introduction to Superconductivity. 2nd ed. (MGH, New York, 1996).

    Google Scholar 

  56. W. E. Lawrence and S. Doniach, in Proceedings of LT 12, Ed. by E. Kanda (Keigaku, Tokyo, 1971).

  57. S. T. Ruggiero, T. W. Barbee, and M. R. Beasley, “Superconductivity in quasi-two-dimensional layered composites,” Phys. Rev. Lett. 45, 1299 (1980).

    Article  CAS  Google Scholar 

  58. W. R. White, A. Kapitulnik, and M. R. Beasley, “Model system for vortex motion in coupled two-dimensional type-II superconductors,” Phys. Rev. Lett. 66, 2826 (1991).

    Article  CAS  Google Scholar 

  59. D. H. Lowndes, D. P. Norton, and J. D. Budai, “Superconductivity in nonsymmetric epitaxial YBa2Cu3O7 – x/PrBa2Cu3O7 – x superlattice: The superconducting behavior of Cu–O bilayers,” Phys. Rev. Lett. 65, 1160 (1990).

    Article  CAS  Google Scholar 

  60. J. Pearl, “Current distribution in superconducting films carrying quantized fluxoids,” Appl. Phys. Lett. 5, No. 4, 65–66 (1964).

    Article  Google Scholar 

  61. D. Cole, J. S. Neal, M. R. Connolly, S. J. Bending, S. Savel’ev, F. Nori, M. Tokunaga, and T. Tamegai, “Vortex pumps in the crossing lattices regime of highly anisotropic layered superconductors,” Phys. C 437438, 52–56 (2006).

    Article  CAS  Google Scholar 

  62. J. R. Clem, “Two-dimensional vortices in a stack of thin superconducting films: A model for high-temperature superconducting multilayers,” Phys. Rev. B 43, 7837–7846 (1991).

    Article  CAS  Google Scholar 

  63. V. A. Kashurnikov, A. N. Maksimova, I. A. Rudnev, and D. S. Odintsov, “Magnetization and transport characteristics of layered high-temperature superconductors with different anisotropy parameters,” Phys. Solid State 58, No. 8, 1505–1512 (2016).

    Article  CAS  Google Scholar 

  64. V. A. Kashurnikov, A. N. Maksimova, I. A. Rudnev, and D. S. Odintsov, “The magnetization processes in layered high-temperature superconductors: the effect of anisotropy,” IEEE Trans. Appl. Supercond. 26, No. 3, 8200404(1–4) (2016).

  65. V. A. Kashurnikov, A. N. Maksimova, I. A. Rudnev, and D. S. Odintsov, “Effect of anisotropy on the current-voltage characteristics of layered high-temperature superconductors with internal ferromagnetic defects,” J. Phys. Conf. Ser. 738, No. 1, 012074(1–4) (2016).

  66. J. R. Clem and M. W. Coffey, “Viscous flux motion in a Josephson-coupled layer model of high-Tc superconductors,” Phys. Rev. B 42, 6209 (1990).

    Article  CAS  Google Scholar 

  67. S. Uji, T. Terashima, T. Konoike, T. Yamaguchi, S. Yasuzuka, A. Kobayashi, and B. Zhou, “Internal field effect on vortex states in the layered organic superconductor λ-(BETS)2Fe1 – xGaxCl4 (x = 0.37),” Phys. Rev. B 95, 165133 (2017).

    Article  Google Scholar 

  68. A. Sheikhzada and A. Gurevich, “Dynamic transition of vortices into phase slips and generation of vortex-antivortex pairs in thin film Josephson junctions under dc and ac currents,” Phys. Rev. B 95, 214507 (2017).

    Article  Google Scholar 

  69. J. R. Clem, M. W. Coffey, and Z. Hao, “Lower critical field of a Josephson-coupled layer model of high-Tc superconductors,” Phys. Rev. B 44, 2732 (1991).

    Article  CAS  Google Scholar 

  70. L. I. Burlachkov, “Structure of vortex lattice in biaxial superconductor,” Europhys. Lett. 8, No. 7, 673–677 (1989).

    Article  CAS  Google Scholar 

  71. A. E. Koshelev, “Vortex-chain phases in layered superconductors,” Phys. Rev. B 71, 174507 (2005).

    Article  CAS  Google Scholar 

  72. A. E. Koshelev, “Kink walls and critical behavior of magnetization near the lock-in transition in layered superconductors,” Phys. Rev. B 48, No. 2, 1180 (1993).

    Article  CAS  Google Scholar 

  73. A. E. Koshelev, “Crossing lattices, vortex chains, and angular dependence of melting line in layered superconductors,” Phys. Rev. Lett. 83, No. 1, 187 (1999).

    Article  CAS  Google Scholar 

  74. A. E. Koshelev, “Josephson vortices and solitons inside pancake vortex lattice in layered superconductors,” Phys. Rev. B 68, 094520 (2003).

    Article  CAS  Google Scholar 

  75. M. Beleggia, G. Pozzi, A. Tonomura, H. Kasai, T. Matsuda, K. Harada, T. Akashi, T. Masui, and S. Tajima, “Model of superconducting vortices in layered materials for the interpretation of transmission electron microscopy images,” Phys. Rev. B 70, 184518 (2004).

    Article  CAS  Google Scholar 

  76. A. V. Samokhvalov, A. S. Mel’nikov, and A. I. Buzdin, “Attraction between pancake vortices and vortex molecule formation in the crossing lattices in thin films of layered superconductors,” Phys. Rev. B 85, 184509 (2012).

    Article  CAS  Google Scholar 

  77. A. Grigorenko, S. Bending, T. Tamegai, S. Ooi, and M. Henini, “A one-dimensional chain state of vortex matter,” Nature 414, 728 (2001).

    Article  CAS  Google Scholar 

  78. M. Chudy, M. Eisterer, and H. W. Weber, “Angular dependence of Jc in coated conductors prior to and after fast neutron irradiation,” Phys. C 470, 1300–1303 (2010).

    Article  CAS  Google Scholar 

  79. M. J. Van Bael, M. Lange, S. Raedts, and V. V. Moshchalkov, “Local visualization of asymmetric flux pinning by magnetic dots with perpendicular magnetization,” Phys. Rev. B 68, 014509(1–4) (2003).

  80. C. C. de Souza Silva, A. V. Silhanek, and J. Van de Vondel, “Dipole-induced vortex ratchets in superconducting films with arrays of micromagnets,” Phys. Rev. Lett. 98, 117005(1–4) (2007).

  81. S. Tyagi and Y. Y. Goldschmidt, “Flux melting in Bi2Sr2CaCu2O8 + δ: Incorporating both electromagnetic and Josephson couplings,” Phys. Rev. B 70, 024501(1–14) (2004).

  82. Y. Y. Goldschmidt and S. Tyagi, “Interpolation of the Josephson interaction in highly anisotropic superconductors from a solution of the two-dimensional sine-Gordon equation,” Phys. Rev. B 71, 014503(1–9) (2005).

  83. S. Ryu, S. Doniach, G. Deutscher, and A. Kapitulnik, “Monte Carlo simulation of flux lattice melting in a model high-Tc superconductor,” Phys. Rev. Lett. 68, 710–713 (1992).

    Article  CAS  Google Scholar 

  84. Y. Nonomura and X. Hu, “Phase transition between two kinds of flux-line lattice in high-Tc superconductors in a tilted field,” Phys. C 412–414, 385–390 (2004).

    Article  CAS  Google Scholar 

  85. R. A. Richardson, O. Pla, and F. Nori, “Confirmation of the modified Bean model from simulations of superconducting vortices,” Phys. Rev. Lett. 72, No. 8, 1268 (1994).

    Article  CAS  Google Scholar 

  86. C. Reichhardt, C. J. Olson, J. Groth, S. Field, and F. Nori, “Microscopic derivation of magnetic-flux-density profiles, magnetization hysteresis loops, and critical currents in strongly pinned superconductors,” Phys. Rev. B 52, No. 14, 10441 (1995).

    Article  CAS  Google Scholar 

  87. C. Reichhardt, C. J. Olson, J. Groth, S. Field, and F. Nori, “Vortex plastic flow, local flux density, magnetization hysteresis loops, and critical current, deep in the Bose-glass and Mott-insulator regimes,” Phys. Rev. B 53, No. 14, R8898 (1996).

    Article  CAS  Google Scholar 

  88. C. Reichhardt, C. J. Olson, and F. Nori, “Dynamic phases of vortices in superconductors with periodic pinning,” Phys. Rev. Lett. 78, No. 13, 2648 (1997).

    Article  CAS  Google Scholar 

  89. C. Reichhardt, J. Groth, C. J. Olson, S. B. Field, and F. Nori, “Spatiotemporal dynamics and plastic flow of vortices in superconductors with periodic arrays of pinning sites,” Phys. Rev. B 54, No. 22, 16108 (1997).

    Article  Google Scholar 

  90. RC. Reichhardt, C. J. Olson, and F. Nori, “Commensurate and incommensurate vortex states in superconductors with periodic pinning arrays,” Phys. Rev. B 57, No. 13, 7937 (1998).

    Article  CAS  Google Scholar 

  91. Y. B. Kim, C. F. Hempstead, and A. R. Strnad, “Magnetization and critical supercurrents,” Phys. Rev. 129, 528 (1963).

    Article  CAS  Google Scholar 

  92. T. H. Alden and J. D. Livingston, “Ferromagnetic particles in a type-II superconductor,” J. Appl. Phys. 37, 3551–3556 (1996).

    Article  Google Scholar 

  93. C. C. Koch and G. R. Love, “Superconductivity in niobium containing ferromagnetic gadolinium or paramagnetic yttrium dispersions,” J. Appl. Phys. 40, 3582–3587 (1969).

    Article  CAS  Google Scholar 

  94. A. Palau, H. Parvaneh, N. A. Stelmashenko, H. Wang, J. L. Macmanus-Driscoll, and M. G. Blamire, “Hysteretic vortex pinning in superconductor-ferromagnet nanocomposites,” Phys. Rev. Lett. 98, 117003(1–4) (2007).

  95. N. D. Rizzo, J. Q. Wang, D. E. Prober, L. R. Motowidlo, and B. A. Zeitlin, “Ferromagnetic artificial pinning centers in superconducting Nb0.36Ti0.64 wires,” Appl. Phys. Lett. 69, 2285–2287 (1996).

    Article  CAS  Google Scholar 

  96. C. L. S. Lima, C. C. Silva de Souza, and J. A. Aguiar, “Ac-driven vortex–antivortex dynamics in nanostructured superconductor-ferromagnetic hybrids,” Phys. C 479, 147–150 (2012).

    Article  CAS  Google Scholar 

  97. C. L. S. Lima and C. C. Silva de Souza, “Dynamics of vortex-antivortex matter in nanostructured ferromagnet-superconductor bilayers,” Phys. Rev. B 80, 054514(1–5) (2009).

  98. M. J. Van Bael, J. Bekaert, and K. Temst, “Local observation of field polarity dependent flux pinning by magnetic dipoles,” Phys. Rev. Lett. 86, 155–158 (2001).

    Article  CAS  Google Scholar 

  99. R. B. G. Kramer, A. V. Silhanek, J. Van de Vondel, B. Raes, and V. V. Moshchalkov, “Symmetry-induced giant vortex state in a superconducting Pb film with a fivefold Penrose array of magnetic pinning centers,” Phys. Rev. Lett. 103, 067007(1–4) (2009).

  100. Q. Chen, C. Carballeira, and V. V. Moshchalkov, “Symmetry-breaking effects and spontaneous generation of vortices in hybrid superconductor-ferromagnet nanostructures,” Phys. Rev. B 74, 214519(1–6) (2006).

  101. C. C. De Souza Silva, J. A. Aguiar, and V. V. Moshchalkov, “Linear ac dynamics of vortices in a periodic pinning array,” Phys. Rev. B 68, 134512(1–6) (2003).

  102. M. V. Milosevic and F. M. Peeters, “Superconducting Wigner vortex molecule near a magnetic disk,” Phys. Rev. B 68, 024509(1–4) (2003).

  103. M. Lange, M. J. Van Bael, Y. Bruynseraede, and V. V. Moshchalkov, “Nanoengineered magnetic-field-induced superconductivity,” Phys. Rev. Lett. 90, 197006(1–4) (2003).

  104. A. Hoffmann, L. Fumagalli, N. Jahedi, J. C. Sautner, J. E. Pearson, G. Mihajlović, and V. Metlushko “Enhanced pinning of superconducting vortices by magnetic vortices,” Phys. Rev. B 77, 060506(R)(1–4) (2008).

  105. T. Shapoval, V. Metlushko, M. Wolf, B. Holzapfel, V. Neu, and L. Schultz, “Direct observation of superconducting vortex clusters pinned by a periodic array of magnetic dots in ferromagnetic/superconducting hybrid structures,” Phys. Rev. B 81, 092505(1–4) (2010).

  106. J. E. Villegas, K. D. Smith, L. Huang, Y. Zhu, R. Morales, and I. K. Schuller, “Switchable collective pinning of flux quanta using magnetic vortex arrays: Experiments on square arrays of Co dots on thin superconducting films,” Phys. Rev. B 77, 134510(1–5) (2008).

  107. S. Erdin, I. F. Lyuksyutov, V. L. Pokrovsky, and V. M. Vinokur, “Topological textures in a ferromagnet-superconductor bilayer,” Phys. Rev. Lett. 88, 017001(1–4) (2002).

  108. S. Erdin, “Vortex chain states in a ferromagnet/superconductor bilayer,” Phys. Rev. B 73, 224506 (2006).

    Article  CAS  Google Scholar 

  109. N. Touitou, P. Bernstein, J. F. Hamet, Ch. Simon, L. Mechin, J. P. Contour, and E. Jacquet, “Nonsymmetric current–voltage characteristics in ferromagnet/superconductor thin film structures,” Appl. Phys. Lett. 85, 1742 (2004).

    Article  CAS  Google Scholar 

  110. L. N. Bulaevskii, E. M. Chudnovsky, and M. P. Maley, “Magnetic pinning in superconductor–ferromagnet multilayers,” Appl. Phys. Lett. 76, 2594–2596 (2000).

    Article  CAS  Google Scholar 

  111. M. Houzet and A. I. Buzdin, “Theory of domain-wall superconductivity in superconductor/ferromagnet bilayers,” Phys. Rev. B 74, 214507 (2006).

    Article  CAS  Google Scholar 

  112. A. I. Buzdin and A. S. Mel’nikov, “Domain wall superconductivity in ferromagnetic superconductors,” Phys. Rev. B 67, 020503 (2003).

    Article  CAS  Google Scholar 

  113. A. Yu. Aladyshkin, A. I. Buzdin, A. A. Fraerman, A. S. Mel’nikov, D. A. Ryzhov, and A. V. Sokolov, “Domain-wall superconductivity in hybrid superconductor-ferromagnet structures,” Phys. Rev. B 68, 184508 (2003).

    Article  CAS  Google Scholar 

  114. M. Flokstra and J. Aarts, “Domain-wall enhancement of superconductivity in superconductor/ferromagnet hybrids: Case of weak ferromagnets,” Phys. Rev. B 80, 144513 (2009).

    Article  CAS  Google Scholar 

  115. T. Champel and M. Eschrig, “Effect of an inhomogeneous exchange field on the proximity effect in disordered superconductor-ferromagnet hybrid structures,” Phys. Rev. B 72, 054523 (2005).

    Article  CAS  Google Scholar 

  116. V. O. Yagovtsev and N. G. Pugach, “Magnetization induced in a superconductor due to the effect of proximity with a ferromagnetic dielectric,” Phys. Met. Metallogr. 121, No. 3, 242–247 (2020).

    Article  CAS  Google Scholar 

  117. L. S. Uspenskaya, D. S. L’vov, G. A. Penzyakov, and O. V. Skryabina, “Nonreciprocity in yttrium-iron garnet–superconductor structures,” Phys. Met. Metallogr. 121, No. 5, 469–475 (2020).

    Article  Google Scholar 

  118. A. F. Volkov and K. B. Efetov, “Proximity effect and its enhancement by ferromagnetism in high-temperature superconductor-ferromagnet structures,” Phys. Rev. Lett. 102, 077002 (2009).

    Article  CAS  Google Scholar 

  119. E. A. Ilyina, C. Cirillo, and C. Attanasio, “IV characteristics and critical currents in superconducting/ferromagnetic bilayers,” Phys. C 470, 877–879 (2010).

    Article  CAS  Google Scholar 

  120. J. Duron, F. Grilli, B. Dutoit, and S. Stavrev, “Modelling the E–J relation of high-Tc superconductors in an arbitrary current range,” Phys. C 401, 231–235 (2004).

    Article  CAS  Google Scholar 

  121. E. S. Otabe, S. Komatsu, V. S. Vyatkin, M. Kiuchi, T. Kawahara, and S. Yamaguchi, “Numerical estimation of AC loss in superconductors with ripple current,” Phys. C 494, 173–176 (2013).

    Article  CAS  Google Scholar 

  122. Y. Zhao, J. Fang, W. Zhang, J. Zhao, and L. Sheng, “Comparison between measured and numerically calculated AC losses in second-generation high temperature superconductor pancake coils,” Phys. C 471, 1003–1006 (2011).

    Article  CAS  Google Scholar 

  123. V. S. Semenov, “Analytical representation of the vortex structure of a bloch domain wall,” Phys. Met. Metallogr. 121, No. 8, 781–788 (2020).

    Article  Google Scholar 

  124. S. Stavrev, Y. Yang, and B. Dutoit, “Modelling and AC losses of BSCCO conductors with anisotropic and position-dependent Jc,” Phys. C 378–381, 1091–1096 (2002).

    Article  Google Scholar 

  125. P. De Zhen, Superconductivity of Metals and Alloys (Mir, Moscow, 1968) [in Russian].

  126. V. F. Elesin, V. A. Kashurnikov, and A. I. Podlivaev, “Influence of magnetic and nonmagnetic impurities on the binding energy of carriers in Cu–O clusters,” Zh. Eksp. Teor. Fiz. 104, No. 5, 3835–3847 (1993).

    CAS  Google Scholar 

  127. R. Prozorov, Y. Yeshurun, T. Prozorov, and A. Gedanken, “Magnetic irreversibility and relaxation in assembly of ferromagnetic nanoparticles,” Phys. Rev. B 59, 6956–6965 (1999).

    Article  CAS  Google Scholar 

  128. L. D. Landau and E. M. Lifshits, Theoretical Physics. Vol.VIII. Electrodynamics of Continious Media, 4th ed. (Fizmatlit, Moscow, 2005) [in Russian].

    Google Scholar 

  129. E. C. Stoner and E. P. Wohlfarth, “A mechanism of magnetic hysteresis in heterogeneous alloys,” Philos. Trans. R. Soc. A 240, No. 826, 599–642 (1948).

    Google Scholar 

  130. V. A. Kashurnikov, A. N. Maksimova, and I. A. Rudnev, “Ferromagnetic nanoparticles as efficient bulk pinning centers in HTSC,” J. Phys. Conf. Ser. 507, 022017(1–4) (2014).

  131. V. A. Kashurnikov, A. N. Maksimova, and I. A. Rudnev, “Effect of ferromagnetic impurities on magnetization reversal processes in type II layered superconductors,” Vestn. NIYAU MIFI 3, No. 2, 158–166 (2014).

    Google Scholar 

  132. V. A. Kashurnikov, A. N. Maksimova, and I. A. Rudnev, “ Nonlinear effects at the remagnetization of layered high-temperature superconductors with ferromagnetic impurities under the action of a current and an external magnetic field,” JETP Lett. 100, 439–445 (2014).

    Article  CAS  Google Scholar 

  133. V. A. Kashurnikov, A. N. Maksimova, and I. A. Rudnev, “The peculiarities of magnetization processes in layered high- temperature superconductors with ferromagnetic defects under applying of transport current and external magnetic field,” J. Phys. Conf. Ser. 574, 012129(1–4) (2015).

  134. V. A. Kashurnikov, A. N. Maksimova, I. A. Rudnev, and D. S. Odintsov, “The Formation of magnetic flux domain in the type II superconductors with ferromagnetic defects,” Phys. Procedia 65, 97–100 (2015).

    Article  CAS  Google Scholar 

  135. V. A. Kashurnikov, A. N. Maksimova, I. A. Rudnev, and D. S. Odintsov, “Domain of a magnetic flux in superconductors with ferromagnetic pinning centers,” Phys. Solid State 57, No. 9, 1726–1734 (2015).

    Article  CAS  Google Scholar 

  136. V. L. Bonch-Bruevich and S. G. Kalashnikov, Physics of Semiconductors, 2nd ed. (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  137. M. G. Blamire, R. B. Dinner, S. C. Wimbush, and J. L. MacManus-Driscoll, “Critical current enhancement by Lorentz force reduction in superconductor–ferromagnet nanocomposites,” Supercond. Sci. Technol. 22, 025017(1–6) (2009).

  138. C. H. Tsai, J. Huang, J. H. Lee, F. Khatkhatay, L. Chen, A. Chen, Q. Su, and H. Wang, “Tunable flux pinning landscapes achieved by functional ferromagnetic Fe2O3 : CeO2 vertically aligned nanocomposites in YBa2Cu3O7 – δ thin films,” Phys. C 510, 13–20 (2015).

    Article  CAS  Google Scholar 

  139. V. A. Kashurnikov, A. N. Maksimova, and I. A. Rudnev, “Magnetization of layered high-temperature superconductors with extended ferromagnetic defects,” Phys. Procedia 71, 384–388 (2015).

    Article  CAS  Google Scholar 

  140. V. A. Kashurnikov, A. N. Maksimova, and I. A. Rudnev, “Magnetization of layered superconductors with ferromagnetic nanorods,” J. Phys. Conf. Ser. 633, 012108(1–4) (2015).

  141. V. A. Kashurnikov, A. N. Maksimova, I. A. Rudnev, and D. S. Odintsov, “The critical current density in the layered superconductors with ferromagnetic nanorods,” Phys. C 528, 17–22 (2016).

    Article  CAS  Google Scholar 

  142. V. A. Kashurnikov, A. N. Maksimova, I. A. Rudnev, and A. P. Sotnikova, “Nonlinear interaction of a ferromagnet with a high-temperature superconductor,” J. Exp. Theor. Phys. 116, 476–485 (2013).

    Article  CAS  Google Scholar 

  143. M. P. Philippe, J. F. Fagnard, S. Kirsch, Z. Xu, A. R. Dennis, Y. H. Shi, D. A. Cardwell, B. Vanderheyden, and P. Vanderbemden, “Magnetic characterisation of large grain, bulk Y–Ba–Cu–O superconductor–soft ferromagnetic alloy hybrid structures,” Phys. C 502, 20–30 (2014).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (grants nos. 20-08-00811 (I.A. Rudnev and A.N. Maksimova) and 20-21-00085 (V.A. Kashurnikov and A.N. Moroz) and the Ministry of Science and Higher Education of the Russian Federation (draft state assignment no. 0723-2020-0036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Maksimova.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashurnikov, V.A., Maksimova, A.N., Rudnev, I.A. et al. Magnetic and Transport Properties of Type-II Superconductors: Numerical Modeling and Experiment. Phys. Metals Metallogr. 122, 434–464 (2021). https://doi.org/10.1134/S0031918X21050057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21050057

Keywords:

Navigation