Skip to main content
Log in

r-Almost Newton–Ricci solitons on Legendrian submanifolds of Sasakian space forms

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

We establish the geometrical bearing on Legendrian submanifolds of Sasakian space forms in terms of r-almost Newton–Ricci solitons (r-anrs) with the potential function \(\psi : M^{n} \rightarrow \mathcal {R}\). Also, we discuss the Legendrian immersion of Ricci solitons and obtain conditions for L-minimal and totally geodesic under Newton transformation. Finally, we furnish our paper with the study of 1-anrs on Legendrian submanifolds of Sasakian space form immersed in the locally symmetric Einstein manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L.J. Alías, D. Impera, M. Rigoli, Hypersurfaces of constant higher order mean curvature in warped products. Trans. Am. Math. Soc. 365(2), 591–621 (2013)

    Article  MathSciNet  Google Scholar 

  2. A.M. Blaga, C. Özgür, Almost \(\eta \)-Ricci and almost \(\eta \)-Yamabe solitons with torse-forming potential vector field. arXiv:2003.12574

  3. C. Baikoussis, D.E. Blair, Finite type integral submanifold of the contact manifold \(R^{2n+1}(-3)\). Bull. Ints. Math. Acad. Sincia. 19(4), 327–350 (1991)

    MATH  Google Scholar 

  4. D.E. Blair, Riemannian geometry of contact and symplectic manifolds. Progress in Mathematics, vol. 203 (Birkhauser Boston, Inc., Boston, 2002)

  5. A. Barros, J.N. Gomes, E. Ribeiro Jr., Immersion of almost Ricci solitons into a Riemannian manifold. Mat. Contemp. 40, 91–102 (2011)

    MathSciNet  MATH  Google Scholar 

  6. A. Barros, E. Ribeiro Jr., Some characterizations for compact almost Ricci solitons. Proc. Am. Math. Soc. 140, 1033–1040 (2012)

    Article  MathSciNet  Google Scholar 

  7. G. Catino, Generalized quasi-Einstein manifolds with harmonic Weyl tensor. Math. Z. 271, 751–756 (2012)

    Article  MathSciNet  Google Scholar 

  8. G. Catino, L. Cremaschi, Z. Djadli, C. Mantegazza, L. Mazzieri, The Ricci-Bourguignon flow. Pacific J. Math. 287, 337–370 (2017)

    Article  MathSciNet  Google Scholar 

  9. G. Catino, L. Mazzieri, Gradient Einstein solitons. Nonlinear Anal. 132, 66–94 (2016)

    Article  MathSciNet  Google Scholar 

  10. J.T. Cho, K. Kimura, Ricci solitons and real hypersurfaces in a complex space form. Tohoku Math. J. 61, 205–212 (2009)

    Article  MathSciNet  Google Scholar 

  11. J.T. Cho, Almost contact 3-manifolds and Ricci solitons. Int. J. Geom. Methods Mod. Phys. 10(1), 1220022 (7 pages) (2013)

  12. J.T. Cho, R. Sharma, Contact geometry and Ricci solitons. Int. J. Geom. Methods Mod. Phys. 7(6), 951–960 (2010)

    Article  MathSciNet  Google Scholar 

  13. A.W. Cunha, E.L. de Lima, H.F. de Lima, \(r\)-Almost Newton–Ricci soliton immersed into a Riemannian manifold. J. Math. Anal. Appl. 464, 546–556 (2018)

    Article  MathSciNet  Google Scholar 

  14. H. Cao, D. Zhou, On complete gradient shrinking Ricci solitons. J. Differ. Geom. 85, 175–185 (2010)

    Article  MathSciNet  Google Scholar 

  15. A. Caminha, P. Sousa, F. Camargo, Complete foliations of space forms by hypersurfaces. Bull. Braz. Math. Soc. 41, 339–353 (2010)

    Article  MathSciNet  Google Scholar 

  16. H. Cao, Recent progress on Ricci solitons. Adv. Lect. Math. (ALM) 11, 1–38 (2009)

    MathSciNet  MATH  Google Scholar 

  17. S.K. Chaubey, U.C. De, Characterization of three-dimensional Riemannian manifolds with a type of semi-symmetric metric connection admitting Yamabe soliton. J. Geom. Phys. 157, 103846 (8 pp) (2020) https://doi.org/10.1016/j.geomphys.2020.103846

  18. B. Chow, P. Lu, L. Ni, Hamilton’s Ricci Flow, Grad. Stud. Math., vol. 77 (AMS, Providence, 2010)

  19. U.C. De, Y. Matsuyama, Ricci solitons and gradient Ricci solitons in a Kenmotsu manifold. Southeast Asian Bull. Math. 37, 691–697 (2013)

    MathSciNet  MATH  Google Scholar 

  20. U.C. De, S.K. Chaubey, Y.J. Suh, A note on Almost co-Kähler manifolds. Int. J. Geom. Methods Mod. Phys. 17 (2020), no. 10, 2050153, 14 pp https://doi.org/10.1142/S0219887820501534

  21. U.C. De, S.K. Chaubey, Y.J. Suh, Gradient Yamabe and gradient m-quasi Einstein metrics on three-dimensional cosymplectic manifolds. Mediterr. J. Math. 18 (2021), no. 3, Paper No. 80, 14 pp.

  22. U.C. De, M. Turan, A. Yildiz, A. De, Ricci solitons and gradient Ricci solitons on 3-dimensional normal almost contact metric manifolds. Publ. Math. Debrecen. 80, 127–142 (2012)

    Article  MathSciNet  Google Scholar 

  23. F. Defever, I. Mihai, L. Verstraelen, B.-Y. Chen’s inequality for C-totally real submanifolds of Sasakian space forms. Boll. Unione Mat. Ital. B 7(11), 365–374 (1997)

    MathSciNet  MATH  Google Scholar 

  24. F. Dillen, L. Vrancken, \(C\)-totally real submanifolds of Sasakian space forms. J. Math. Pures Appl. 69, 85–93 (1990)

    MathSciNet  MATH  Google Scholar 

  25. S. Güvenc, C. Özgür, On the Characterizations of \(f\)-Biharmonic Legendre Curves in Sasakian Space Forms. Filomat 31(3), 639–648 (2017)

    Article  MathSciNet  Google Scholar 

  26. R.S. Hamilton, The Ricci flow on Surfaces, Mathematics and General Relativity (Santa Cruz. CA, 1986), Contemp. Math., vol. 71 (Amer. Math. Soc., 1988), pp. 237–262

  27. T. Kajigaya, Second variation formula and the stability of Legendrian minimal submanifolds in Sasakian manifolds. Tohoku Math. J. 65, 523–543 (2013)

    Article  MathSciNet  Google Scholar 

  28. K. Matsumoto, I. Mihai, Ricci tensor of \(C\)-totally real submanifolds in Sasakian space forms. Nihonkai Math. J. 13, 191–198 (2002)

    MathSciNet  MATH  Google Scholar 

  29. I. Mihai, I. Presură, An improved first Chen inequality for Legendrian submanifolds in Sasakian space forms. Period. Math. Hung. 74, 220–226 (2017)

    Article  MathSciNet  Google Scholar 

  30. I. Mihai, Ideal \(C\)-totally real submanifolds in Sasakian space forms. Ann. Mat. Pura Appl. IV. Ser. 182, 345–355 (2003). https://doi.org/10.1007/s10231-003-0073-5

    Article  MathSciNet  MATH  Google Scholar 

  31. Y.G. Oh, Volume minimization of Lagrangian submanifolds under Hamiltonian deformations. Math. Zeit. 212, 175–192 (1993)

    Article  MathSciNet  Google Scholar 

  32. H. Ono, Second variational and Legendrian stabilities of minimal Legendrain submanifolds in Sasakian manifolds. Differ. Geom. Appl. 22, 327–340 (2005)

    Article  Google Scholar 

  33. S. Pigola, M. Rigoli, M. Rimoldi, A. Setti, Ricci almost solitons. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 10, 757–799 (2011)

    MathSciNet  MATH  Google Scholar 

  34. H.B. Lawson, Local rigidity theorems for minimal hypersurfaces. Ann. Math. 89, 187–197 (1969)

    Article  MathSciNet  Google Scholar 

  35. T. Sasahara, Legendre surfaces in Sasakian space forms whose mean curvature vectors are eigenvectors. Publ. Math. Debrecen. 67, 285–303 (2005)

    MathSciNet  MATH  Google Scholar 

  36. M.D. Siddiqi, Ricci \(\rho \)-soliton and geometrical structure in a dust fluid and viscous fluid spacetime. Bulg. J. Phys. 46, 163–173 (2019)

    Google Scholar 

  37. J. Simons, Minimal varieties in Riemannian manifolds. Ann. Math. 88, 62–105 (1968)

    Article  MathSciNet  Google Scholar 

  38. M. Turan, C. Yetim, S.K. Chaubey, On quasi-Sasakian \(3\)-manifolds admitting \(\eta \)-Ricci solitons. Filomat 33(15), 4923–4930 (2019)

    Article  MathSciNet  Google Scholar 

  39. Y. Wang, X. Liu, Ricci solitons on three-dimensional \(\eta \)-Einstein almost Kenmotsu manifold. Taiwan J. Math. 19(1), 91–100 (2015)

    Article  MathSciNet  Google Scholar 

  40. Y. Wang, Gradient Ricci almost solitons on two classes of almost Kenmotsu manifolds. J. Korean Math. Soc. 53(5), 1101–1114 (2016)

    Article  MathSciNet  Google Scholar 

  41. Y. Wang, Ricci solitons on almost Kenmotsu 3-manifolds. Open Math. 15(1), 1236–1243 (2017)

    Article  MathSciNet  Google Scholar 

  42. W. Wylie, Complete shrinking Ricci solitons have finite fundamental group. Proc. Am. Math. Soc. 136, 1803–1806 (2008)

    Article  MathSciNet  Google Scholar 

  43. H.W. Xu, J. Gu, Rigidity of Einstein manifolds with positive scalar curvature. Math. Ann. 358, 169–193 (2014)

    Article  MathSciNet  Google Scholar 

  44. K. Yano, M. Kon, Structures on Manifolds. Series in Pure Mathematics, vol. 3 (World Scientific, Singapore, 1984)

  45. S.T. Yau, Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry. Indiana Univ. Math. J. 25, 659–670 (1976)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors express their sincere thanks to the anonymous referees for providing valuable suggestions for the improvement of the paper. The third author is grateful to the University of Technology and Applied Sciences-Shinas for their continuous support and encouragement to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhakar K. Chaubey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De, U.C., Siddiqi, M.D. & Chaubey, S.K. r-Almost Newton–Ricci solitons on Legendrian submanifolds of Sasakian space forms. Period Math Hung 84, 76–88 (2022). https://doi.org/10.1007/s10998-021-00394-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-021-00394-x

Keywords

Mathematics Subject Classification

Navigation