Skip to main content
Log in

Multidimensional specification test based on non-stationary time series

  • Original Paper
  • Published:
TEST Aims and scope Submit manuscript

Abstract

In the literature, most works of the specification tests focus on the problem with one-dimensional response or fixed multidimensional responses. In this paper, we develop a new specification test for the parametric models with non-stationary regressor under multidimensional setup, where the dimension of responses may tend to infinity, which fills a gap in the literature. The theoretical results about the asymptotic properties of the proposed test are studied and the optimal rate of the local departure under the alternative hypothesis is also given which ensures the models underpinning by the null and alternative hypotheses can be differentiated. Some simulation studies are done to evaluate the performance of the proposed test with the finite sample. Besides, a real data example based on the US aggregate consumers’ consumption data is employed to illustrate the performance. The results of simulation studies and real data analysis both demonstrate the efficiency of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Chen J, Gao J, Li D, Lin Z (2013) Nonparametric specification testing in nonlinear and nonstationary time series models: theory and practice. SSRN Electron J. https://doi.org/10.2139/ssrn.2235356

    Article  Google Scholar 

  • Cho H, Kim S (2017) Model specification test in a semiparametric regression model for longitudinal data. J Multivar Anal 160:105–116

    Article  MathSciNet  Google Scholar 

  • Dette H (1999) A consistent test for the functional form of a regression based on a difference of variance estimators. Ann Stat 27(3):1012–1040

    Article  MathSciNet  Google Scholar 

  • Dong C, Gao J (2018) Specification testing driven by orthogonal series for nonlinear cointegration with endogeneity. Econom Theory 34(4):754–789

    Article  MathSciNet  Google Scholar 

  • Dong C, Gao J, Tjøstheim D, Yin J (2017) Specification testing for nonlinear multivariate cointegrating regressions. J Econom 200(1):104–117

    Article  MathSciNet  Google Scholar 

  • Eubank RL, Hart JD (1992) Testing goodness-of-fit in regression via order selection criteria. Ann Stat 20(3):1412–1425

    Article  MathSciNet  Google Scholar 

  • Fan Y, Li Q (1996) Consistent model specification tests: omitted variables and semiparametric functional forms. Econometrica 64(4):865–890

    Article  MathSciNet  Google Scholar 

  • Fan Y, Li Q (2002) A consistent model specification test based on kernel sum of squares residuals. Econom Rev 21(3):337–352

    Article  MathSciNet  Google Scholar 

  • Gao J (2012) Model specification between parametric and nonparametric cointegration. SSRN Electron J. https://doi.org/10.2139/ssrn.2140996

    Article  Google Scholar 

  • Gao J, Casas I (2008) Specification testing in discretized diffusion models: theory and practice. J Econom 147(1):131–140

    Article  MathSciNet  Google Scholar 

  • Gao J, Dong C (2012) Specification testing driven by orthogonal series in nonlinear and nonstationary time series models. SSRN Electron J. https://doi.org/10.2139/ssrn.2175290

    Article  Google Scholar 

  • Gao J, King M, Lu Z, Tjøstheim D (2009a) Nonparametric specification testing for nonlinear time series with nonstationarity. Econom Theory 25:1869–1892

    Article  MathSciNet  Google Scholar 

  • Gao J, King M, Lu Z, Tjøstheim D (2009b) Specification testing in nonlinear and nonstationary time series autoregression. Ann Stat 37(6B):3893–3928

    Article  MathSciNet  Google Scholar 

  • Gao J, Wang Q, Yin J (2011) Specification testing in nonlinear time series with long-range dependence. Econom Theory 27(2):260–284

    Article  MathSciNet  Google Scholar 

  • Gao J, Chen J, Li D, Lin Z (2015) Specification testing in nonstationary time series models. Econom J 18(1):117–136

    Article  MathSciNet  Google Scholar 

  • Geman D, Horowitz J (1980) Occupation densities. Ann Probab 8(1):1–67

    Article  MathSciNet  Google Scholar 

  • Guerre E, Lavergne P (2005) Data-driven rate-optimal specification testing in regression models. Ann Stat 33(2):840–870

    Article  MathSciNet  Google Scholar 

  • Hardle W, Mammen E (1993) Comparing nonparametric versus parametric regression fits. Ann Stat 21(4):1926–1947

    Article  MathSciNet  Google Scholar 

  • Hart J, Wehrly TE (1992) Kernel regression when the boundary region is large, with an application to testing the adequacy of polynomial models. J Am Stat Assoc 87(420):1018–1024

    Article  MathSciNet  Google Scholar 

  • Hong Y, Lee YJ (2013) A loss function approach to model specification testing and its relative efficiency. Ann Stat 41(3):1166–1203

    Article  MathSciNet  Google Scholar 

  • Koul H, Stute W (1998) Lack of fit tests in regression with non-random design. Appl Stat Sci III 25:53–69

    MathSciNet  Google Scholar 

  • Koul HL, Song W, Liu S (2014) Model checking in tobit regression via nonparametric smoothing. J Multivar Anal 125:36–49

    Article  MathSciNet  Google Scholar 

  • Ladd GW (1965) Experiments with autoregressive error estimation. Res Bull (Iowa Agriculture and Home Economics Experiment Station) 35(533):1

    Google Scholar 

  • Lin Z, Li Q, Sun Y (2014) A consistent nonparametric test of parametric regression functional form in fixed effects panel data models. J Econom 178(1):167–179

    Article  MathSciNet  Google Scholar 

  • Revuz D, Yor M (1999) Continuous martingales and Brownian motion. Springer, Berlin

    Book  Google Scholar 

  • Stute W (1997) Nonparametric model checks for regression. Ann Stat 25(2):613–641

    Article  MathSciNet  Google Scholar 

  • Stute W, Zhu LX (2002) Model checks for generalized linear models. Scand J Stat 29(3):535–545

    Article  MathSciNet  Google Scholar 

  • Stute W, Manteiga WG, Quindimil MP (1998a) Bootstrap approximations in model checks for regression. J Am Stat Assoc 93(441):141–149

    Article  MathSciNet  Google Scholar 

  • Stute W, Thies S, Zhu LX (1998b) Model checks for regression: an innovation process approach. Ann Stat 26(5):1916–1934

    Article  MathSciNet  Google Scholar 

  • Sun Z, Wang Q, Dai P (2009) Model checking for partially linear models with missing responses at random. J Multivar Anal 100(4):636–651

    Article  MathSciNet  Google Scholar 

  • Sun Z, Chen F, Zhou X, Zhang Q (2017) Improved model checking methods for parametric models with responses missing at random. J Multivar Anal 154:147–161

    Article  MathSciNet  Google Scholar 

  • Toda AA (2011) Income dynamics with a stationary double pareto distribution. Phys Rev E Stat Nonlinear Soft Matter Phys 83(4):046122

    Article  Google Scholar 

  • Vetter M, Dette H (2012) Model checks for the volatility under microstructure noise. Bernoulli 18(4):1421–1447

    Article  MathSciNet  Google Scholar 

  • Wang Q, Phillips PC (2009) Asymptotic theory for local time density estimation and nonparametric cointegrating regression. Econom Theory 25(3):710–738

    Article  MathSciNet  Google Scholar 

  • Wang Q, Phillips PCB (2012) A specification test for nonlinear nonstationary models. Ann Stat 40(2):727–758

    Article  MathSciNet  Google Scholar 

  • Wang Q, Wu D, Zhu K (2018) Model checks for nonlinear cointegrating regression. J Econom 207(2):261–284

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research work is supported by NSFC No. 11801034 and NSAF No. U1430125. The authors are grateful to Professor Ping-Shou Zhong for his kindly help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yubin Tian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Here, the proofs of Theorems 13 are presented. In order to prove these theoretical results, some lemmas are needed to be shown firstly.

Lemma 1

Under Assumptions A-D, we have

  1. (1)

    \(\sum \nolimits _{t=1}^n\dfrac{1}{d_t}\sim \dfrac{n^{\frac{\mu }{2}}}{p}\), \(n\rightarrow \infty .\)

  2. (2)

    \(\sum \nolimits _{t=2}^n\sum \nolimits _{s=1}^{t-1}\dfrac{1}{d_{ts}}\dfrac{1}{d_s}<Cn^{\mu }\), \(n\rightarrow \infty \), C is a constant.

  3. (3)

    \(\sum \nolimits _{k=3}^n\sum \nolimits _{t=2}^{k-1}\sum \nolimits _{s=1}^{t-1}\dfrac{1}{d_{kt}}\dfrac{1}{d_{ts}}\dfrac{1}{d_s}<Cn^{\frac{3}{2}\mu }\), C is a constant.

Proof

  1. (1)
    $$\begin{aligned} \lim _{n\rightarrow \infty }\dfrac{\sum \nolimits _{t=1}^n\dfrac{1}{d_t}}{n^{\mu /2}/p}=\lim _{n\rightarrow \infty }\dfrac{\sum \nolimits _{t=1}^n\dfrac{1}{t^{1-\mu /2}log(t)}}{n^{\mu /2}/log(n)}=\lim _{n\rightarrow \infty }\dfrac{log(n)}{\frac{\mu }{2}log(n)-1}=\dfrac{2}{\mu }. \end{aligned}$$

    Since \(\dfrac{2}{\mu }>0\) is a constant, we have \(\sum \nolimits _{t=1}^n\dfrac{1}{d_t}\sim \dfrac{n^{\frac{\mu }{2}}}{p}\).

  2. (2)
    $$\begin{aligned}&\sum \limits _{t=2}^n\sum \limits _{s=1}^{t-1}\dfrac{1}{d_{ts}}\dfrac{1}{d_s}=C_4 \sum \limits _{t=2}^n\sum \limits _{s=1}^{t-1}\dfrac{1}{log(t)(t-s)^{1-\mu /2}}\dfrac{1}{log(s) s^{1-\mu /2}} \\&\quad<C_4 \sum \limits _{t=2}^n\sum \limits _{s=1}^{t-1}\dfrac{1}{(t-s)^{1-\mu /2}}\dfrac{1}{s^{1-\mu /2}}\sim C_4 \sum \limits _{s=1}^{n-1}\dfrac{1}{s^{1-\mu /2}}\displaystyle {\int _{s+1}^n (t-s)^{\mu /2-1}\mathrm {d}t} \\&\quad <\dfrac{2}{\mu }C_4 \sum \limits _{s=1}^{n-1} s^{\mu /2-1}n^{\mu /2}\sim Cn^{\mu }. \end{aligned}$$
  3. (3)
    $$\begin{aligned}&\sum \limits _{k=3}^n\sum \limits _{t=2}^{k-1}\sum \limits _{s=1}^{t-1}\dfrac{1}{d_{kt}}\dfrac{1}{d_{ts}}\dfrac{1}{d_s}\le C_5\sum \limits _{k=3}^n\sum \limits _{t=2}^{k-1}\sum \limits _{s=1}^{t-1}\dfrac{1}{(k-t)^{1-\mu /2}}\dfrac{1}{(t-s)^{1-\mu /2}}\dfrac{1}{s^{1-\mu /2}} \\&\quad<C_6n^{\mu /2}\sum \limits _{s=1}^{n-2}\dfrac{1}{s^{1-\mu /2}}\sum \limits _{t=s+1}^{n-1}\dfrac{1}{(t-s)^{1-\mu /2}}<Cn^{\frac{3}{2}\mu }. \end{aligned}$$

    \(\square \)

The following Lemma 2 shows some properties of the Hermite functions which which is proved in Dong and Gao (2018).

Lemma 2

Let \({\mathscr {T}}_k(x)=\dfrac{1}{k}\sum \nolimits _{i=0}^{k-1}{\mathscr {H}}_i^2(x)\) and \({\mathscr {T}}(x)=\dfrac{1}{2\pi }\sqrt{4-x^2}I\{|x|\le 2\}\), then \({\mathscr {T}}_k(x)\) converges to \({\mathscr {T}}(x)\) for any \(x\in R\) as \(k\rightarrow \infty \). Moreover, \(\int _{-\infty }^{\infty }|{\mathscr {T}}_k(x)-{\mathscr {T}}(x)|\,\mathrm{d}x\rightarrow 0\) as \(k\rightarrow \infty \).

Proof of Theorem 1

Under \(H_0\), \({\hat{e}}_{t}^{(i)}=y_{t}^{(i)}-g(x_{t};{\hat{\theta }}^{(i)})=y_{t}^{(i)}-g(x_{t};\theta _{0}^{(i)})+g(x_{t};\theta _{0}^{(i)})-g(x_{t};{\hat{\theta }}^{(i)})\), denote \({\hat{g}}^{(i)}(x)=g(x;\theta _0^{(i)})-g(x;{\hat{\theta }}^{(i)})\), then \({\hat{e}}_{t}^{(i)}=e_t^{(i)}+{\hat{g}}^{(i)}(x_{t})\). The test statistic \(T_{np}\) can be rewritten as

$$\begin{aligned} T_{np}&=\sum \limits _{i=1}^{p}\sum \limits _{t=1}^{n}\sum \limits _{s=1}^{n}Z(x_t)'Z(x_s)(e_t^{(i)}+{\hat{g}}^{(i)}(x_{t}))(e_s^{(i)}+{\hat{g}}^{(i)}(x_{s})) \\&=\sum \limits _{i=1}^{p}\sum \limits _{t=1}^{n}\sum \limits _{s=1}^{n}Z(x_t)'Z(x_s)e_{t}^{(i)}e_{s}^{(i)}+2\sum \limits _{i=1}^{p}\sum \limits _{t=1}^{n}\sum \limits _{s=1}^{n} Z(x_t)'Z(x_s)e_{t}^{(i)}{\hat{g}}^{(i)}(x_{s}) \\&\quad +\sum \limits _{i=1}^{p}\sum \limits _{t=1}^{n}\sum \limits _{s=1}^{n} Z(x_t)'Z(x_s){\hat{g}}^{(i)}(x_{t}){\hat{g}}^{(i)}(x_{s}) \\&=T_{np1}+T_{np2}+T_{np3}. \end{aligned}$$

We first consider the term \(T_{np1}\),

$$\begin{aligned} T_{np1}&=\sum \limits _{i=1}^{p}\sum \limits _{t=1}^{n}\sum \limits _{s=1}^{n}Z(x_t)'Z(x_s)e_{t}^{(i)}e_{s}^{(i)} \\&=\sum \limits _{i=1}^{p}\sum \limits _{t=1}^{n}\Vert Z(x_t)\Vert ^2 \sigma _0+\sum \limits _{i=1}^{p}\sum \limits _{t=1}^{n}\Vert Z(x_t)\Vert ^2 ({e_{t}^{(i)}}^2-\sigma _0) \\&\quad +2\sum \limits _{i=1}^{p}\sum \limits _{t=2}^{n}\sum \limits _{s=1}^{t-1}Z(x_t)'Z(x_s)e_{t}^{(i)}e_{s}^{(i)}\\&=T_{np1}'+T_{np1}''+T_{np1}'''. \end{aligned}$$

Using the notations in Lemma 2, we have

$$\begin{aligned} \dfrac{1}{n^{\mu /2}K\sigma _0}T_{np1}'&=\dfrac{1}{n^{\mu /2}K\sigma _0}\sum \limits _{i=1}^{p}\sum \limits _{t=1}^{n}\Vert Z(x_t)\Vert ^2 \sigma _0=\dfrac{1}{n^{\mu /2}K\sigma _0}p\sigma _0\sum \limits _{t=1}^{n}\Vert Z(x_t)\Vert ^2 \\&=\dfrac{p}{n^{\mu /2}K}\sum \limits _{t=1}^{n}\Vert Z(x_t)\Vert ^2 \\&=\dfrac{p}{n^{\mu /2}}\sum \limits _{t=1}^{n}{\mathscr {T}}(x_t)+\dfrac{p}{n^{\mu /2}}\sum \limits _{t=1}^{n}[{\mathscr {T}}_K(x_t)-{\mathscr {T}}(x_t)]. \end{aligned}$$

Let \(h(n)=p^2\sim log^2(n)\), so h(n) is a slowly varying function. Then according to Corollary 2.1 in Wang and Phillips (2009) and \(\int {\mathscr {T}}\,\mathrm{d}x=1\), we have

$$\begin{aligned} \dfrac{p}{n^{\mu /2}}\sum \limits _{t=1}^{n}{\mathscr {T}}(x_t)\xrightarrow {D}L_{W_{1-\mu /2}}(1,0). \end{aligned}$$

Noting that the standard normal density function is a bounded function, by Lemmas 1(1) and 2, we have

$$\begin{aligned}&E\left| \dfrac{p}{n^{\mu /2}}\sum \limits _{t=1}^n[{\mathscr {T}}_k(x_t)-{\mathscr {T}}(x_t)]\right| \le \dfrac{p}{n^{\mu /2}}\sum \limits _{t=1}^n E\left| {\mathscr {T}}_k(x_t)-{\mathscr {T}}(x_t)\right| \\&\quad \le \dfrac{O(1)p}{n^{\mu /2}}\sum \limits _{t=1}^n\dfrac{1}{d_t} \displaystyle {\int \left| {\mathscr {T}}_k(x)-{\mathscr {T}}(x)\right| \mathrm {d}x}\rightarrow 0. \end{aligned}$$

Hence, we have \(\dfrac{1}{n^{\mu /2}K\sigma _0}T_{np1}'\xrightarrow {D}L_{W_{1-\mu /2}}(1,0)\).

For \(T_{np1}''\), noting that \(\Vert Z(x)\Vert ^2\le O(1)K\) uniformly for any x and \(\int \Vert Z(x)\Vert ^2\,\mathrm{d}x=K\) by orthogonality and by Assumption B(b), we have

$$\begin{aligned}&E\left( \dfrac{1}{n^{\mu /2}K\sigma _0}T_{np1}''\right) ^2 \\&\quad =E\left( \dfrac{1}{n^{\mu /2}K\sigma _0}\sum \limits _{i=1}^{p}\sum \limits _{t=1}^{n}\Vert Z(x_t)\Vert ^2 ({e_{t}^{(i)}}^2-\sigma _0)\right) ^2 \\&\quad =\dfrac{1}{n^{\mu }K^2\sigma _0^2}E\sum \limits _{i=1}^{p}\sum \limits _{j=1}^{p}\sum \limits _{t=1}^{n}\Vert Z(x_t)\Vert ^4 ({e_{t}^{(i)}}^2-\sigma _0)({e_{t}^{(j)}}^2-\sigma _0) \\&\quad \le \dfrac{O(1)}{n^{\mu }K}E\sum \limits _{i=1}^{p}\sum \limits _{j=1}^{p}\sum \limits _{t=1}^{n}\Vert Z(x_t)\Vert ^2 ({e_{t}^{(i)}}^2 {e_{t}^{(j)}}^2-{e_{t}^{(i)}}^2\sigma _0-{e_{t}^{(j)}}^2\sigma _0+\sigma _0^2) \\&\quad =\dfrac{O(1)}{n^{\mu }K}\sum \limits _{i=1}^{p}\sum \limits _{j=1}^{p}E({e_{t}^{(i)}}^2 {e_{t}^{(j)}}^2-\sigma _0^2) E\sum \limits _{t=1}^{n}\Vert Z(x_t)\Vert ^2\le \dfrac{O(1)p^2}{n^{\mu }K}\dfrac{n^{\mu /2}}{p}\displaystyle {\int \Vert Z(x)\Vert ^2\mathrm {d}x} \rightarrow 0. \end{aligned}$$

Now we move on to \(T_{np1}'''\),

$$\begin{aligned}&E\left( \dfrac{1}{n^{\mu /2}K\sigma _0}T_{np1}'''\right) ^2=E\left( \dfrac{2}{n^{\mu /2}K\sigma _0}\sum \limits _{i=1}^{p}\sum \limits _{t=2}^{n}\sum \limits _{s=1}^{t-1}Z(x_t)'Z(x_s)e_{t}^{(i)}e_{s}^{(i)}\right) ^2 \\&\quad =\dfrac{4}{n^{\mu }K^2\sigma _0^2}\sum \limits _{i=1}^{p}\sum \limits _{j=1}^{p}\sigma _{ij}^2 E\sum \limits _{t=2}^{n}\sum \limits _{s=1}^{t-1}|Z(x_t)'Z(x_s)|^2 \end{aligned}$$

Let \({\mathscr {F}}_s\) be the information flow of \(\{u_1,\ldots ,u_s\}\). According to \({\int [Z(x)'Z(x_s)]^2\mathrm {d}x}=\Vert Z(x_s)\Vert ^2\), we have

$$\begin{aligned} E|Z(x_t)'Z(x_s)|^2&=E\displaystyle {\int \left[ Z\left( x_s+\dfrac{1}{d_{ts}}x\right) 'Z(x_s)\right] ^2\phi (x)\mathrm {d}x} \\&\le \dfrac{O(1)}{d_{ts}}E\displaystyle {\int \left[ Z(x)'Z(x_s)\right] ^2\mathrm {d}x}\le \dfrac{O(1)k}{d_{ts}d_{s}}. \end{aligned}$$

Thus, by Lemma 1(2), we have

$$\begin{aligned} E\left( \dfrac{1}{n^{\mu /2}K\sigma _0}T_{np1}'''\right) ^2\le \dfrac{O(1)p^2}{n^{\mu }K^2}n^{\mu }K=\dfrac{O(1)p^2}{K}\rightarrow 0, \end{aligned}$$

and together with the last several results we yield

$$\begin{aligned} \dfrac{1}{n^{\mu /2}K\sigma _0}T_{np1}\xrightarrow {D}L_{W_{1-\mu /2}}(1,0). \end{aligned}$$

For \(T_{np3}\), we will show that \(\dfrac{1}{n^{\mu /2}K\sigma _0}T_{np3}=o_p(1)\). Set \(\xi _n\sim n^{\lambda _2}\), \(n\rightarrow \infty \) where \(\lambda _2\) satisfies \(\lambda _0<\lambda _2<-\dfrac{\mu }{4}\). For any \(\delta \), \(\epsilon >0\),

$$\begin{aligned}&P\left( \dfrac{1}{n^{\mu /2}K\sigma _0}|T_{np3}|>\delta \right) \le P\left( \Vert {\hat{\theta }}^{(i)}-\theta _0^{(i)}\Vert>\xi _n\epsilon ,\exists i\right) \\&\quad +P\left( \dfrac{1}{n^{\mu /2}K\sigma _0}|T_{np3}|>\delta , \Vert {\hat{\theta }}^{(i)}-\theta _0^{(i)}\Vert \le \xi _n\epsilon ,\forall i\right) . \end{aligned}$$

For the first term of the right-hand side of the inequality, apply the Boole’s inequality,

$$\begin{aligned}P\left( \Vert {\hat{\theta }}^{(i)}-\theta _0^{(i)}\Vert>\xi _n\epsilon ,\exists i\right) \le p\cdot \sup _i P\left( \Vert {\hat{\theta }}^{(i)}-\theta _0^{(i)}\Vert >\xi _n\epsilon \right) =O(1)log(n)n^{\lambda _0-\lambda _2}=o(1).\end{aligned}$$

Then for the second term, according to the virtue of Markov’s inequality, we have

$$\begin{aligned}&P\left( \dfrac{1}{n^{\mu /2}K\sigma _0}|T_{np3}|>\delta , \Vert {\hat{\theta }}^{(i)}-\theta _0^{(i)}\Vert \le \xi _n\epsilon ,\forall i\right) \\&\quad \le \dfrac{1}{n^{\mu /2}K\sigma _0\delta }E\left[ |T_{np3}|\prod \limits _{i=1}^p I\{\Vert {\hat{\theta }}^{(i)}-\theta _0^{(i)}\Vert \le \xi _n\epsilon \}\right] \\&\quad =\dfrac{1}{n^{\mu /2}K\sigma _0\delta }E\vert \sum \limits _{i=1}^{p}\sum \limits _{t=1}^{n}\sum \limits _{s=1}^{n} Z(x_t)'Z(x_s){\hat{g}}^{(i)}(x_{t}){\hat{g}}^{(i)}(x_{s})\prod \limits _{j=1}^p I\{\Vert {\hat{\theta }}^{(j)}-\theta _0^{(j)}\Vert \le \xi _n\epsilon \}\vert .&\end{aligned}$$

where \(I(\cdot )\) stands for the indicator function.

Using Taylor expansion for \(g(x;\theta )\) with respect to \(\theta \) in a neighborhood of \(\theta _0^{(i)}\), we have

$$\begin{aligned} g(x;{\hat{\theta }}^{(i)})=g(x;\theta _0^{(i)})+l_1(x;\theta _0^{(i)})'({\hat{\theta }}^{(i)}-\theta _0^{(i)})+\dfrac{1}{2}({\hat{\theta }}^{(i)}-\theta _0^{(i)})'l_2(x;{\bar{\theta }}^{(i)})({\hat{\theta }}^{(i)}-\theta _0^{(i)}) \end{aligned}$$

where \({\bar{\theta }}^{(i)}\) is on the line segment joining \(\theta _0^{(i)}\) and \({\hat{\theta }}_0^{(i)}\). Therefore,

$$\begin{aligned}&{\hat{g}}^{(i)}(x_{t})=g(x;\theta _0^{(i)})-g(x;{\hat{\theta }}^{(i)})=l_1(x_t; \theta _0^{(i)})'(\theta _0^{(i)}-{\hat{\theta }}^{(i)}) \\&\quad -\dfrac{1}{2}({\hat{\theta }}^{(i)}-\theta _0^{(i)})'l_2(x_t;{\bar{\theta }}^{(i)})({\hat{\theta }}^{(i)}-\theta _0^{(i)}). \end{aligned}$$

Thus,

$$\begin{aligned}&\dfrac{1}{n^{\mu /2}K\sigma _0\delta }E\vert \sum \limits _{i=1}^{p}\sum \limits _{t=1}^{n}\sum \limits _{s=1}^{n} Z(x_t)'Z(x_s){\hat{g}}^{(i)}(x_{t}){\hat{g}}^{(i)}(x_{s})\prod \limits _{j=1}^p I\{\Vert {\hat{\theta }}^{(j)}-\theta _0^{(j)}\Vert \le \xi _n\epsilon \}\vert \\&\quad \le \dfrac{O(1)}{n^{\mu /2}K}E\sum \limits _{i=1}^{p}\sum \limits _{t=1}^{n}\sum \limits _{s=1}^{n}\vert Z(x_t)'Z(x_s)l_1(x_t;\theta _0^{(i)})'(\theta _0^{(i)}-{\hat{\theta }}^{(i)})l_1(x_s;\theta _0^{(i)})'(\theta _0^{(i)}-{\hat{\theta }}^{(i)}) \\&\qquad \cdot \prod \limits _{j=1}^p I\{\Vert {\hat{\theta }}^{(j)}-\theta _0^{(j)}\Vert \le \xi _n\epsilon \}\vert +\dfrac{O(1)}{n^{\mu /2}K}E\sum \limits _{i=1}^{p}\sum \limits _{t=1}^{n}\sum \limits _{s=1}^{n}\vert Z(x_t)'Z(x_s)l_1(x_t;\theta _0^{(i)})'(\theta _0^{(i)}-{\hat{\theta }}^{(i)}) \\&\qquad \cdot ({\hat{\theta }}^{(i)}-\theta _0^{(i)})'l_2(x_s;{\bar{\theta }}^{(i)})({\hat{\theta }}^{(i)}-\theta _0^{(i)})\prod \limits _{j=1}^p I\{\Vert {\hat{\theta }}^{(j)}-\theta _0^{(j)}\Vert \le \xi _n\epsilon \}\vert \\&\qquad +\dfrac{O(1)}{n^{\mu /2}K}E\sum \limits _{i=1}^{p}\sum \limits _{t=1}^{n}\sum \limits _{s=1}^{n}\vert Z(x_t)'Z(x_s)({\hat{\theta }}^{(i)}-\theta _0^{(i)})'l_2(x_t;{\bar{\theta }}^{(i)})({\hat{\theta }}^{(i)}-\theta _0^{(i)}) \\&\qquad \cdot ({\hat{\theta }}^{(i)}-\theta _0^{(i)})'l_2(x_s;{\bar{\theta }}^{(i)})({\hat{\theta }}^{(i)}-\theta _0^{(i)})\prod \limits _{j=1}^p I\{\Vert {\hat{\theta }}^{(j)}-\theta _0^{(j)}\Vert \le \xi _n\epsilon \}\vert \\&\quad =T_{np3}'+T_{np3}''+T_{np3}'''. \end{aligned}$$

Since \(\lambda _2<-\dfrac{\mu }{4}\) and \(p\sim \log (n)\), \(\xi _n^2 n^{\mu /2}p\sim n^{2\lambda _2+\mu /2}p=o(1)\). For \(T_{np3}'\), due to the arbitrariness of \(\epsilon \), by results (1) and (2) in Lemma 1, we have

$$\begin{aligned} T_{np3}'\le & {} \dfrac{O(1)\xi _n^2\epsilon ^2}{n^{\mu /2}K}E\sum \limits _{i=1}^{p}\sum \limits _{t=1}^{n}\sum \limits _{s=1}^{n} |Z(x_t)'Z(x_s)|\Vert l_1(x_{t};\theta _{0}^{(i)})\Vert \Vert l_1(x_{s};\theta _{0}^{(i)})\Vert \\\le & {} \dfrac{O(1)\xi _n^2\epsilon ^2}{n^{\mu /2}}E\sum \limits _{i=1}^{p}\sum \limits _{t=1}^{n} \Vert l_1(x_{t};\theta _{0}^{(i)})\Vert ^2 \\&\quad +\dfrac{O(1)\xi _n^2\epsilon ^2}{n^{\mu /2}}E\sum \limits _{i=1}^{p}\sum \limits _{t=2}^{n}\sum \limits _{s=1}^{t-1} \Vert l_1(x_{t};\theta _{0}^{(i)})\Vert \Vert l_1(x_{s};\theta _{0}^{(i)})\Vert \\\le & {} O(1)\xi ^2\epsilon ^2+O(1)\xi ^2\epsilon ^2 n^{\mu /2}p=o(1). \end{aligned}$$

Similarly, for \(T_{np3}'''\), we have

$$\begin{aligned} T_{np3}'''&\le \dfrac{O(1)\xi _n^4\epsilon ^4}{n^{\mu /2}K}E\sum \limits _{i=1}^{p}\sum \limits _{t=1}^{n}\sum \limits _{s=1}^{n} |Z(x_t)'Z(x_s)|\Vert l_2(x_{t};{\bar{\theta }}^{(i)})\Vert \Vert l_2(x_{s};{\bar{\theta }}^{(i)})\Vert \\&\le O(1)\xi ^4\epsilon ^4+O(1)\xi ^4\epsilon ^4 n^{\mu /2}p=o(1).&\end{aligned}$$

Apply Cauchy–Schwartz inequality, we have

$$\begin{aligned} T_{np3}''\le 2\sqrt{T_{np3}'T_{np3}'''}=o(1). \end{aligned}$$

Thus,

$$\begin{aligned} \dfrac{1}{n^{\mu /2}K\sigma _0}T_{np3}\xrightarrow {P} 0. \end{aligned}$$

Apply Cauchy–Schwartz inequality again, we have

$$\begin{aligned} \dfrac{1}{n^{\mu /2}K\sigma _0}T_{np2}\xrightarrow {P} 0. \end{aligned}$$

Finally, we get

$$\begin{aligned} \dfrac{1}{n^{\mu /2}K\sigma _0}T_{np}\xrightarrow {D}L_{W_{1-\mu /2}}(1,0). \end{aligned}$$

Then, the proof of Theorem 1 is finished. \(\square \)

Proof of Theorem 2

Under \(H_1\) and Assumption D, we have \(m^{(i)}(x_t)=g(x_t;\theta _0^{(i)})+\Delta _n^{(i)}(x_t)=g(x_t;\theta _0^{(i)})+\delta _n \Delta ^{(i)}(x_t)\). Thus

$$\begin{aligned} {\hat{e}}_{t}^{(i)}&=y_{t}^{(i)}- g(x_{t};{\hat{\theta }}^{(i)})=e_{t}^{(i)}+\delta _n \Delta ^{(i)}(x_t)+g(x_{t};\theta _{0}^{(i)})-g(x_{t};{\hat{\theta }}^{(i)}) \\&=e_{t}^{(i)}+\delta _n \Delta ^{(i)}(x_t)+{\hat{g}}^{(i)}(x_{t}). \end{aligned}$$

The test statistic \(T_{np}\) can be rewritten as

$$\begin{aligned} T_{np}= & {} \sum \limits _{i=1}^{p}\sum \limits _{t=1}^{n}\sum \limits _{s=1}^{n} Z(x_t)'Z(x_s)(e_{t}^{(i)}+\delta _n \Delta ^{(i)}(x_t))(e_{s}^{(i)}+\delta _n \Delta ^{(i)}(x_s)) \\&\quad +2\sum \limits _{i=1}^{p}\sum \limits _{t=1}^{n}\sum \limits _{s=1}^{n} Z(x_t)'Z(x_s)(e_{t}^{(i)}+\delta _n \Delta ^{(i)}(x_t)){\hat{g}}^{(i)}(x_{s}) \\&\quad +\sum \limits _{i=1}^{p}\sum \limits _{t=1}^{n}\sum \limits _{s=1}^{n} Z(x_t)'Z(x_s){\hat{g}}^{(i)}(x_{t}){\hat{g}}^{(i)}(x_{s})\\= & {} T_{np1}+T_{np2}+T_{np3}. \end{aligned}$$

It is already showed in the proof of Theorem 1 that \(\dfrac{1}{n^{\mu /2}k\sigma _0}T_{np3}=o_p(1)\), and by Cauchy–Schwarz inequality, \(|T_{np2}|\le 2\sqrt{T_{np1}T_{np3}}\). So we only need to show \(\dfrac{1}{n^{\mu /2}k\sigma _0}T_{np1}\xrightarrow {p}\infty \) to finish the proof. Consider the term \(T_{np1}\) firstly, we have

$$\begin{aligned} T_{np1}&=\sum \limits _{i=1}^{p}\sum \limits _{t=1}^{n}\sum \limits _{s=1}^{n} Z(x_t)'Z(x_s)e_{t}^{(i)}e_{s}^{(i)}+2\delta _n\sum \limits _{i=1}^{p}\sum \limits _{t=1}^{n}\sum \limits _{s=1}^{n} Z(x_t)'Z(x_s)\Delta ^{(i)}(x_t)e_{s}^{(i)} \\&\quad +\delta _n^2\sum \limits _{i=1}^{p}\sum \limits _{t=1}^{n}\sum \limits _{s=1}^{n} Z(x_t)'Z(x_s)\Delta ^{(i)}(x_t)\Delta ^{(i)}(x_s)=T_{np1}'+2T_{np1}''+T_{np1}'''. \end{aligned}$$

From the proof of Theorem 1, we know that \(\dfrac{1}{n^{\mu /2}K\sigma _0}T_{np1}'\xrightarrow {D}L_{W_{1-\mu /2}}(1,0).\)

For \(T_{np1}'''\),

$$\begin{aligned} \dfrac{1}{n^{\mu /2}K\sigma _0}T_{np1}'''=&\dfrac{\delta _n^2}{n^{\mu /2}K\sigma _0}\cdot \dfrac{n^{\mu }}{p^2}\sum \limits _{i=1}^{p}\sum \limits _{l=0}^{K-1}\left( \dfrac{p}{n^{\mu /2}}\sum \limits _{t=1}^n{\mathscr {H}}_l(x_t)\Delta ^{(i)}(x_t)\right) ^2 \\&\ge \dfrac{\delta _n^2 n^{\mu /2}}{p^2 K\sigma _0}\sum \limits _{i=1}^{p}\left( \dfrac{p}{n^{\mu /2}}\sum \limits _{t=1}^n{\mathscr {H}}_{l_i}(x_t)\Delta ^{(i)}(x_t)\right) ^2, \end{aligned}$$

where \(l_i\) is the first integer such that \(\int {\mathscr {H}}_{l_i}(x)\Delta ^{(i)}(x)\mathrm {d}x\ne 0\) under dimension i. Such \(l_i\) must exist, otherwise, for any l, \(\int {\mathscr {H}}_{l}(x)\Delta ^{(i)}(x)\mathrm {d}x=0\), which means \(\Delta ^{(i)}(x)\) is orthogonal with every \({\mathscr {H}}_l(x)\), i.e., \(\Delta ^{(i)}(x)\) is a zero function, that contradicts the assumption.

Apply Corollary 2.1 in Wang and Phillips (2009) again, as \(n\rightarrow \infty \), we have

$$\begin{aligned} \dfrac{p}{n^{\mu /2}}\sum \limits _{t=1}^n{\mathscr {H}}_{l_i}(x_t)\Delta ^{(i)}(x_t)\xrightarrow {D}\int {\mathscr {H}}_{l_i}(x)\Delta ^{(i)}(x)\mathrm {d}xL_{W_{1-\mu /2}}(1,0). \end{aligned}$$

By continuous mapping theorem, we get

$$\begin{aligned} \left( \dfrac{p}{n^{\mu /2}}\sum \limits _{t=1}^n{\mathscr {H}}_{l_i}(x_t)\Delta ^{(i)}(x_t)\right) ^2\xrightarrow {D}\left( \int {\mathscr {H}}_{l_i}(x)\Delta ^{(i)}(x)\mathrm {d}xL_{W_{1-\mu /2}}(1,0)\right) ^2, \end{aligned}$$

as \(n\rightarrow \infty \).

According to Assumption D, \(\dfrac{\delta _n^2 n^{\mu /2}}{p^2 K\sigma _0}\rightarrow \infty \), thus

$$\begin{aligned} \dfrac{\delta _n^2 n^{\mu /2}}{p^2 K\sigma _0}\sum \limits _{i=1}^p\left( \int {\mathscr {H}}_{l_i}(x)\Delta ^{(i)}(x)\mathrm {d}xL_{W_{1-\mu /2}}(1,0)\right) ^2\xrightarrow {P}\infty . \end{aligned}$$

It follows that \( \dfrac{1}{n^{\mu /2}K\sigma _0}T_{np1}'''=\varOmega _P\left( \dfrac{\delta _n^2 n^{\mu /2}}{p^2 K}\right) \rightarrow \infty .\)

For \(T_{np1}''\), it can be rewritten as

$$\begin{aligned} T_{np1}''&=\delta _n\sum \limits _{i=1}^{p}\sum \limits _{t=1}^{n} Z(x_t)'Z(x_s)\Delta ^{(i)}(x_t)e_{t}^{(i)}+\delta _n\sum \limits _{i=1}^p\mathop {\sum \limits ^n \sum \limits ^n}_{t>s} Z(x_t)'Z(x_s)\Delta ^{(i)}(x_t)e_{s}^{(i)} \\&\quad +\delta _n\sum \limits _{i=1}^p\mathop {\sum \limits ^n \sum \limits ^n}_{t<s} Z(x_t)'Z(x_s)\Delta ^{(i)}(x_t)e_{s}^{(i)} \\&=T_{np11}''+T_{np12}''+T_{np13}'' \end{aligned}$$

We first consider the term \(T_{np11}''\),

$$\begin{aligned} E\left( \dfrac{1}{n^{\mu /2}K\sigma _0}T_{np11}''\right) ^2&=\dfrac{\delta _n^2}{n^{\mu }K^2\sigma _0^2}\sum \limits _{i=1}^{p}\sum \limits _{j=1}^{p}\sum \limits _{t=1}^{n}\Vert Z(x_t)\Vert ^4\Delta ^{(i)}(x_t)\Delta ^{(j)}(x_t)\sigma _{ij} \\&\le \dfrac{O(1)\delta _n^2}{n^{\mu }K}\sum \limits _{i=1}^{p}\sum \limits _{j=1}^{p}\sum \limits _{t=1}^{n}\Vert Z(x_t)\Vert ^2\sigma _{ij}=\dfrac{O(1)\delta _n^2 p}{n^{\mu /2}}\rightarrow 0. \end{aligned}$$

Then, we move on to \(T_{np12}''\),

$$\begin{aligned}&E\left( \dfrac{1}{n^{\mu /2}K\sigma _0}T_{np12}''\right) ^2 \\&\quad =\dfrac{\delta _n^2}{n^{\mu }K^2\sigma _0^2}E\left( \sum \limits _{i=1}^{p}\sum \limits _{j=1}^{p}\sum \limits _{s=1}^{n-1}\sum \limits _{t_1=s+1}^{n}\sum \limits _{t_2=s+1}^{n} Z(x_{t_1})' Z(x_s) Z(x_{t_2})' Z(x_s)\Delta ^{(i)}(x_{t_1})\Delta ^{(j)}(x_{t_2})e_{s}^{(i)}e_{s}^{(j)}\right) \\&\quad =\dfrac{\delta _n^2}{n^{\mu }K^2\sigma _0^2}E\left( \sum \limits _{i=1}^{p}\sum \limits _{j=1}^{p}\sum \limits _{t=2}^{n}\sum \limits _{s=1}^{n-1} [Z(x_{t})' Z(x_s)]^2 \Delta ^{(i)}(x_{t})\Delta ^{(j)}(x_{t})\sigma _{ij}\right) \\&\qquad +\dfrac{\delta _n^2}{n^{\mu }K^2\sigma _0^2}E\left( 2\sum \limits _{i=1}^{p}\sum \limits _{j=1}^{p}\sum \limits _{t_1=t_2+1}^{n}\sum \limits _{t_2=s+1}^{n-1}\sum \limits _{s=1}^{n-2} Z(x_{t_1})' Z(x_s) Z(x_{t_2})' Z(x_s)\Delta ^{(i)}(x_{t_1})\Delta ^{(j)}(x_{t_2})\sigma _{ij}\right) \\&\quad =T_{np121}''+T_{np122}'' \end{aligned}$$

For \(T_{np121}''\), by Lemma 1(2), \(\dfrac{\delta _n^2}{n^{\mu }K^2\sigma _0^2}T_{np121}''\le \dfrac{O(1)\delta _n^2 p^2}{K}\rightarrow 0.\)

For \(T_{np122}\), by Lemma 1(3),

$$\begin{aligned}&\dfrac{\delta _n^2}{n^{\mu }K^2\sigma _0^2}T_{np122}''\le \dfrac{O(1)\delta _n^2 p^2}{n^{\mu }K^2}\sum \limits _{t_1=t_2+1}^{n}\sum \limits _{t_2=s+1}^{n-1}\sum \limits _{s=1}^{n-2} E| Z(x_{t_1})' Z(x_s) Z(x_{t_2})' Z(x_s) | \\&\quad =\dfrac{O(1)\delta _n^2 p^2}{n^{\mu }K^2}\sum \limits _{t_1=t_2+1}^{n}\sum \limits _{t_2=s+1}^{n-1}\sum \limits _{s=1}^{n-2} E| Z(x_{t_2}+x_{t_1}-x_{t_2})' Z(x_s) Z(x_{t_2})' Z(x_s) | \\&\quad \le \dfrac{O(1)\delta _n^2 p^2}{n^{\mu }K^2}\sum \limits _{t_1=t_2+1}^{n}\sum \limits _{t_2=s+1}^{n-1}\sum \limits _{s=1}^{n-2}\dfrac{1}{d_{t_1 t_2}}\dfrac{1}{d_{t_2 s}}\dfrac{1}{d_s}\iiint |Z(x)'Z(z)Z(y)'Z(z)|\mathrm {d}x\mathrm {d}y\mathrm {d}z \\&\quad \le \dfrac{O(1)\delta _n^2 p^2 n^{\mu /2}}{K^2}\iint |Z(x)'Z(z)|^2\mathrm {d}x\mathrm {d}z=\dfrac{O(1)\delta _n^2 p^2 n^{\mu /2}}{K^2}\int \Vert Z(z)\Vert ^2\mathrm {d}z=\dfrac{O(1)\delta _n^2 p^2 n^{\mu /2}}{K}. \end{aligned}$$

Thus, \(\dfrac{1}{n^{\mu /2}K\sigma _0}T_{np12}''=O_p(\delta _n p n^{\mu /4} K^{-1/2}).\)

Similarly, we can get

$$\begin{aligned} \dfrac{1}{n^{\mu /2}K\sigma _0}T_{np13}''=O_p(\delta _n p n^{\mu /4} K^{-1/2}). \end{aligned}$$

Then

$$\begin{aligned} \dfrac{1}{n^{\mu /2}K\sigma _0}T_{np1}''=O_p(\delta _n p n^{\mu /4} K^{-1/2}). \end{aligned}$$

As we just have proved earlier,

$$\begin{aligned} \dfrac{1}{n^{\mu /2}K\sigma _0}T_{np1}'''=\varOmega _P\left( \dfrac{\delta _n^2 n^{\mu /2}}{p^2 K}\right) , \end{aligned}$$

while

$$\begin{aligned} \dfrac{\delta _n p n^{\mu /4}K^{-1/2}}{\delta _n^2 n^{\mu /2}/(p^2K)}=\dfrac{p^3K^{1/2}}{\delta _n n^{\mu /4}}=\dfrac{p^3}{n^{\lambda /2}}\rightarrow 0, \end{aligned}$$

so the divergence rate of \(\dfrac{1}{n^{\mu /2}K\sigma _0}T_{np1}'''\) dominates the divergence rate of \(\dfrac{1}{n^{\mu /2}K\sigma _0}T_{np1}''\). Thus,

$$\begin{aligned} \dfrac{1}{n^{\frac{\mu }{2}}K\sigma _{0}}T_{np}\xrightarrow {P}\infty ,\quad K,n,p\rightarrow \infty . \end{aligned}$$

\(\square \)

Proof of Theorem 3

As \({\hat{\sigma }}\) is a consistent estimator for \(\sigma _0\), this theorem is obvious due to Theorems 1 and 2. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, D. & Tian, Y. Multidimensional specification test based on non-stationary time series. TEST 31, 348–372 (2022). https://doi.org/10.1007/s11749-021-00780-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11749-021-00780-0

Keywords

Mathematics Subject Classification

Navigation