Skip to main content
Log in

Canonical trace ideal and residue for numerical semigroup rings

  • RESEARCH ARTICLE
  • Published:
Semigroup Forum Aims and scope Submit manuscript

Abstract

For a numerical semigroup ring K[H] we study the trace of its canonical ideal. The colength of this ideal is called the residue of H. This invariant measures how far is H from being symmetric, i.e. how far is K[H] from being a Gorenstein ring. We remark that the canonical trace ideal contains the conductor ideal, and we study bounds for the residue. For 3-generated numerical semigroups we give explicit formulas for the canonical trace ideal and the residue of H. Thus, in this setting we can classify those whose residue is at most one (the nearly Gorenstein ones), and we show the eventual periodic behaviour of the residue in a shifted family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Barucci, V., Fröberg, R.: One-dimensional almost Gorenstein rings. J. Algebra 188, 418–442 (1997)

    Article  MathSciNet  Google Scholar 

  2. Brennan, J.P., Ghezzi, L., Hong, J., Hutson, L., Vasconcelos, W.V.: Canonical degrees of Cohen–Macaulay rings and modules: a survey, Preprint (2020), arXiv:2006.14401 [math.AC]

  3. Bruns,W., Herzog, J.: Cohen–Macaulay Rings, Revised Ed., Cambridge Stud. Adv. Math., vol. 39, Cambridge University Press, Cambridge (1998)

  4. Conaway, R., Gotti, F., Horton, J., Pelayo, R., Williams, M., Wissman, B.: Minimal presentations of shifted numerical monoids. Int. J. Algebra Comput. 28, 53–68 (2018)

    Article  MathSciNet  Google Scholar 

  5. Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 4-1-2—a computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2019)

  6. Delgado, M., García-Sánchez, P.A., Morais, J.: numericalsgps: a GAP package on numerical semigroups. (http://www.gap-system.org/Packages/numericalsgps.html)

  7. Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry, Graduate Texts in Mathematics 150. Springer, Berlin (1995)

    Google Scholar 

  8. Fröberg, R., Gottlieb, C., Häggkvist, R.: On numerical semigroups. Semigroup Forum 35, 63–83 (1987)

    Article  MathSciNet  Google Scholar 

  9. The GAP Group. GAP—Groups, Algorithms, and Programming, Version 4.7.5, 2014. (http://www.gap-system.org)

  10. Gimenez, P., Sengupta, I., Srinivasan, H.: Minimal graded free resolutions for monomial curves defined by arithmetic sequences. J. Algebra 338, 294–310 (2013)

    Article  MathSciNet  Google Scholar 

  11. Goto, S., Matsuoka, N., Thi Phuong, T.: Almost Gorenstein rings. J. Algebra 379, 355–381 (2013)

    Article  MathSciNet  Google Scholar 

  12. Herzog, J.: Generators and relations of Abelian semigroups and semigroup rings. Manuscr. Math. 3, 175–193 (1970)

    Article  MathSciNet  Google Scholar 

  13. Herzog, J., Hibi, T., Stamate, D.I.: The trace of the canonical module. Israel J. Math. 233, 133–165 (2019)

    Article  MathSciNet  Google Scholar 

  14. Herzog, J., Stamate, D.I.: On the defining equations of the tangent cone of a numerical semigroup ring. J. Algebra 418, 8–28 (2014)

    Article  MathSciNet  Google Scholar 

  15. Herzog, J., Watanabe, K.: Almost symmetric numerical semigroups. Semigroup Forum 98, 589–630 (2019)

    Article  MathSciNet  Google Scholar 

  16. Jayanthan, A.V., Srinivasan, H.: Periodic occurence of complete intersection monomial curves. Proc. Am. Math. Soc. 141, 4199–4208 (2013)

    Article  Google Scholar 

  17. Kunz, E.: The value-semigroup of a one-dimensional Gorenstein ring. Proc. Am. Math. Soc. 25, 748–751 (1970)

    Article  MathSciNet  Google Scholar 

  18. Kunz, E.: Einführung in die kommutative Algebra und algebraische Geometrie. Vieweg, Braunschweig/Wiesbaden (1980)

    Book  Google Scholar 

  19. Lindo, H.: Trace ideals and centers of endomorphism rings of modules over commutative rings. J. Algebra 482, 102–130 (2017)

    Article  MathSciNet  Google Scholar 

  20. Moscariello, A., Strazzanti, F.: Nearly Gorenstein versus almost Gorenstein affine monomial curves. Mediterr. J. Math. 18, 127 (2021). https://doi.org/10.1007/s00009-021-01761-1

  21. Nari, H.: Symmetries on almost symmetric numerical semigroups. Semigroup Forum 86, 140–154 (2013)

    Article  MathSciNet  Google Scholar 

  22. Nari, T., Numata, T., Watanabe, K.: Genus of numerical semigroups generated by three elements. J. Algebra 358, 67–73 (2012)

    Article  MathSciNet  Google Scholar 

  23. Numata, T.: Almost symmetric numerical semigroups with small number of generators. Nihon University, Tokyo (2015). (Ph.D. Thesis)

  24. O’Neill, C., Pelayo, R.: Apèry sets of shifted numerical monoids. Adv. Appl. Math. 97, 27–35 (2018)

    Article  MathSciNet  Google Scholar 

  25. Patil, D.P., Sengupta, I.: Minimal set of generators for the derivation module of certain monomial curves. Commun. Algebra 27, 5619–5631 (1999)

    Article  MathSciNet  Google Scholar 

  26. Ramírez Alfonsín, J.L.: The Diophantine Frobenius Problem, Oxford Lecture Series in Mathematics and its Applications, vol. 30. Oxford University Press, Oxford (2005)

    Book  Google Scholar 

  27. Rosales, J.C., García-Sánchez, P.A.: Pseudo-symmetric numerical semigroups with three generators. J. Algebra 291, 46–54 (2005)

    Article  MathSciNet  Google Scholar 

  28. Rosales, J.C., García-Sánchez, P.A.: Numerical Semigroups, Developments in Mathematics, vol. 20. Springer, Berlin (2009)

    Book  Google Scholar 

  29. Stamate, D.I.: Asymptotic properties in the shifted family of a numerical semigroup with few generators. Semigroup Forum 93, 225–246 (2016)

    Article  MathSciNet  Google Scholar 

  30. Stamate, D.I.: Betti numbers for numerical semigroup rings. In: Ene, V., Miller, E. (eds.) Multigraded Algebra and Applications, Springer Proceedings in Mathematics & Statistics, vol. 238, pp. 133–157. Springer, Cham (2018)

    Google Scholar 

  31. Tripathi, A.: On a variation of the coin exchange problem for arithmetic progressions. Integers 3, A1 (2003)

    MathSciNet  Google Scholar 

  32. Vu, T.: Periodicity of Betti numbers of monomial curves. J. Algebra 418, 66–90 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the use of SINGULAR [5] and of the numericalsgps package [6] in GAP [9] for our computations. Dumitru Stamate was partly supported by a fellowship at the Research Institute of the University of Bucharest (ICUB) and by the University of Bucharest, Faculty of Mathematics and Computer Science through the 2019 Mobility Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dumitru I. Stamate.

Additional information

Communicated by Benjamin Steinberg.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Trace ideals as conductor ideals in local rings

Appendix A. Trace ideals as conductor ideals in local rings

Some statements in this paper can be formulated for extensions of 1-dimensional local domains where the conductor is defined. In this appendix we would like to understand the case when the trace of an ideal coincides with the conductor ideal, and some consequences this draws.

Hereafter, \((R,{\mathfrak m})\) is a 1-dimensional Cohen–Macaulay local ring with canonical module \(\omega _R\). Assume now that \((R,{\mathfrak m})\subset ({\widetilde{R}},{\mathfrak n})\) is an extension of local rings, where \({\widetilde{R}}\) is a finite R-module and a discrete valuation ring such that \({\widetilde{R}}\subseteq Q(R)\). We also assume that the inclusion map \(R\rightarrow {\widetilde{R}}\) induces an isomorphism \(R/{\mathfrak m}\rightarrow {\widetilde{R}}/{\mathfrak n}\). The set

$$\begin{aligned} {\mathcal {C}}_{{\widetilde{R}}/R}= \{x \in R: x {\widetilde{R}} \subseteq R \} \end{aligned}$$

is called the conductor of this extension and it is an ideal of both R and \({\widetilde{R}}\). With the notation introduced we have

Proposition A.1

For any ideal \(I\subset R\) one has \({\mathcal {C}}_{{\widetilde{R}}/R}\subseteq {\text {tr}}(I)\). In particular, \({\mathcal {C}}_{{\widetilde{R}}/R}\subseteq {\text {tr}}(\omega _R)\).

Proof

There exists \(f\in I\) such that \(I{\widetilde{R}}=(f){\widetilde{R}}\). Now let \(g\in {\mathcal {C}}_{{\widetilde{R}}/R}\). Then \((g/f)I\subseteq (g/f)I{\widetilde{R}}=g{\widetilde{R}}\subseteq R\). Thus \(g/f\in I^{-1}\). Since \(g=(g/f)f\) with \(f\in I\), it follows that \(g\in I^{-1}\cdot I={\text {tr}}(I)\), where for the last equation we used [13, Lemma 1.1]. \(\square \)

Corollary A.2

R is nearly Gorenstein if \({\mathcal {C}}_{{\widetilde{R}}/R}={\mathfrak m}\).

For the rest of this section, the ideal quotients are computed in \(Q(R)=Q({\widetilde{R}})\). The following lemma will be used in the proof of Proposition A.4.

Lemma A.3

\( {\widetilde{R}}=R:{\mathcal {C}}_{{\widetilde{R}}/R} \)

Proof

It is clear from the definition of \({\mathcal {C}}_{{\widetilde{R}}/R}\) that \( {\widetilde{R}} \subseteq R:{\mathcal {C}}_{{\widetilde{R}}/R}\).

For the reverse inclusion, let \(f\in R:{\mathcal {C}}_{{\widetilde{R}}/R}\). If \(f\notin {\widetilde{R}}\), then since \(Q(R)=Q({\widetilde{R}})\) we may write \(f=\epsilon t^{-a}\) with \(\epsilon \) invertible in \({\widetilde{R}}\), a positive integer and t a generator of the maximal ideal of \({\widetilde{R}}\). Since \({\mathcal {C}}_{{\widetilde{R}}/R}\) is an ideal in \({\widetilde{R}}\), there exists \(b>0\) such that \({\mathcal {C}}_{{\widetilde{R}}/R}=(t^b){\widetilde{R}}\).

The property \(f\in R:{\mathcal {C}}_{{\widetilde{R}}/R}\) now reads as \(\epsilon t^{-a} {\mathcal {C}}_{{\widetilde{R}}/R} \subseteq R\), or equivalently, that \( {\mathcal {C}}_{{\widetilde{R}}/R} \subseteq t^a R\). This implies that \(b\ge a\). Since we may write \(t^{b-1}= f\cdot g\) where \(g=\epsilon ^{-1}t^{a+b-1}\) is clearly in \({\mathcal {C}}_{{\widetilde{R}}/R}\), it follows that \(t^{b-1}\in R\).

We claim that \(t^{b-1}{\widetilde{R}} \subseteq R\). This will then lead to a contradiction, since \(t^{b-1}\not \in {\mathcal {C}}_{{\widetilde{R}}/R}\). It is clear that \(t^{b-1}{\mathfrak n}= {\mathcal {C}}_{{\widetilde{R}}/R}\subseteq R\). Thus is suffices to show that if \(\nu \in {\widetilde{R}}\) is a unit, then \(\nu t^{b-1}\in R\). To prove this, we use our assumption that \(R/{\mathfrak m}\rightarrow {\widetilde{R}}/{\mathfrak n}\) is an isomorphism. In order to simplify notation we may assume that \(R/{\mathfrak m}= {\widetilde{R}}/{\mathfrak n}\). Then this implies that there exists \(h\in R\) such that \(\nu -h\in {\mathfrak n}\). Thus, \(\nu =h+h_1\) with \(h\in R\) and \(h_1\in {\mathfrak n}\), and therefore \(\nu t^{b-1}=h t^{b-1}+h_1 t^{b-1}\). Since both summands on the right hand side of this equation belong to R, the claim follows.

This concludes the proof of the inclusion \(R:{\mathcal {C}}_{{\widetilde{R}}/R} \subseteq {\widetilde{R}}\). \(\square \)

Our next result gives several characterizations of the situation when \({\text {tr}}(I)={\mathcal {C}}_{{\widetilde{R}}/R}\), in terms of the fractionary ideal \(I^{-1}\). We first recall that for any fractionary ideal J of R, the ideal quotient J : J may be identified with the endomorphism ring \({\text {End}}(J)\) of J, see [19, Lemma 3.14].

Proposition A.4

Let \(I\subset R\) be an ideal. The following conditions are equivalent:

(i):

\({\text {tr}}(I)={\mathcal {C}}_{{\widetilde{R}}/R}\).

(ii):

\({\text {End}}(I^{-1})={\widetilde{R}}\).

(iii):

\(I^{-1}\cong {\widetilde{R}}\).

Proof

(i) \({}\Rightarrow {}\)(ii): If \({\text {tr}}(I)={\mathcal {C}}_{{\widetilde{R}}/R}\), then using Lemma A.3 and the remark following it, we get

$$\begin{aligned} {\widetilde{R}}=R:{\mathcal {C}}_{{\widetilde{R}}/R} =R:(I \cdot I^{-1})=(R:I):I^{-1}={\text {End}}(I^{-1}). \end{aligned}$$

(ii)\({}\Rightarrow {}\)(i): Suppose that \({\text {tr}}(I)\ne {\mathcal {C}}_{{\widetilde{R}}/R}\). Then \({\mathcal {C}}_{{\widetilde{R}}/R}\) is properly contained in \({\text {tr}}(I)\). It follows that \({\mathcal {C}}_{{\widetilde{R}}/R}\) is properly contained in \({\text {tr}}(I){\widetilde{R}}\). Let t be generator of the maximal ideal of \({\widetilde{R}}\). Then there exist integers \(a <b\) such that \({\text {tr}}(I){\widetilde{R}}=t^a{\widetilde{R}}\) and \({\mathcal {C}}_{{\widetilde{R}}/R}=t^b{\widetilde{R}}\). Clearly, \(t^{b}\in {\mathcal {C}}_{{\widetilde{R}}/R}{\widetilde{R}}={\mathcal {C}}_{{\widetilde{R}}/R}\). Since \({\text {tr}}(I){\widetilde{R}}\) is a principal ideal, there exists \(f\in {\text {tr}}(I)\) such that \({\text {tr}}(I){\widetilde{R}}= (f){\widetilde{R}}\). Therefore, there exists u invertible in \({\widetilde{R}}\) such that \(t^a=u\cdot f\).

Since by assumption \({\widetilde{R}}={\text {End}}(I^{-1})\) (which is \(R:{\text {tr}}(I)\)), we obtain that \(t^a\in R\). We may write \(t^{b-1}=t^{b-a-1}\cdot t^a\), where \(t^{b-a-1}\in {\widetilde{R}}\) and \(t^a\in {\text {tr}}(I)\). Using again that \({\widetilde{R}}=R:{\text {tr}}(I)\), it follows that \(t^{b-1}\in R\). Arguing as in the proof of Lemma A.3 we obtain \(t^{b-1} \in {\mathcal {C}}_{{\widetilde{R}}/R}\), which is a contradiction.

(ii)\({}\Rightarrow {}\)(iii): If \({\text {End}}(I^{-1})={\widetilde{R}}\), then \(I^{-1}{\widetilde{R}}=I^{-1}\). Since any nonzero \({\widetilde{R}}\)-ideal is isomorphic to \({\widetilde{R}}\), the assertion follows.

(iii)\({}\Rightarrow {}\)(ii) is obvious. \(\square \)

For an R-module M we let e(M) denote its multiplicity.

Corollary A.5

Let R be as before, and assume in addition that R is of the form \(R=S/J\) with \((S,{\mathfrak n})\) regular local ring of dimension 3 and \(J\subseteq {\mathfrak n}^2\).

If \({\text {tr}}(\omega _R)= {\mathcal {C}}_{{\widetilde{R}}/R}\) then \(e(R) \le \mu (J)\). Moreover, if R is an almost complete intersection, then R has minimal multiplicity.

Proof

Since R is a 1-dimensional domain, it it Cohen-Macaulay and \({\text {proj\,dim}}_S (R)=1\). Thus J has a minimal presentation \( 0 \rightarrow S^{g-1} \rightarrow S^{g} \rightarrow J\), where \(g=\mu (J)\).

Now Proposition A.4(iii) together with \({\text {tr}}(\omega _R)= {\mathcal {C}}_{{\widetilde{R}}/R}\) imply that \(\omega _R^{-1}\) and \({\widetilde{R}}\) are isomorphic R-modules, and they must have the same number of minimal generators over R. Hence \(\dim _{R/{\mathfrak m}}({\widetilde{R}}/{\mathfrak m}{\widetilde{R}})=\mu (\omega _R^{-1}) \le g\), by [13, Corollary 3.4].

As \({\widetilde{R}}\) is a discrete valuation ring, there exists \(f\in {\mathfrak m}\) such that \({\mathfrak m}{\widetilde{R}}=f{\widetilde{R}}\). Since \({\widetilde{R}}\) is a finitely generated R-module of rank 1, it follows that \(e(R)=e({\widetilde{R}})\), see [3, Corollary 4.7.9]. Now \(e({\widetilde{R}})=\dim _{R/{\mathfrak m}}{\mathfrak m}^k{\widetilde{R}}/{\mathfrak m}^{k+1}{\widetilde{R}}\) for \(k\gg 0\). Since \({\mathfrak m}^k{\widetilde{R}}/{\mathfrak m}^{k+1}{\widetilde{R}}=f^k{\widetilde{R}}/f^{k+1}{\widetilde{R}}\cong {\widetilde{R}}/f{\widetilde{R}} \cong {\widetilde{R}}/{\mathfrak m}{\widetilde{R}}\), we conclude from the above considerations that \(e(R)\le g\), as desired.

If R is an almost complete intersection, then \(\mu (J)={\text {height}}(J)+1= \dim S\), hence \(e(R) \le 3\). On the other hand, a celebrated inequality of Abhyankar gives \(3={\text {emb\,dim}}R \le e(R)+\dim (R)-1=e(R)\). Thus \(e(R)=3\), as desired. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herzog, J., Hibi, T. & Stamate, D.I. Canonical trace ideal and residue for numerical semigroup rings. Semigroup Forum 103, 550–566 (2021). https://doi.org/10.1007/s00233-021-10205-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00233-021-10205-x

Keywords

Navigation