Skip to main content
Log in

Spin Glass and Isotropic Negative Magnetoresistance in GaAs–AlGaAs Quantum Wells with a Virtual Anderson Transition

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We report on the results of experiments indicating the existence of spin glass in beryllium-doped GaAs–AlGaAs quantum wells with a virtual Anderson transition. We have observed experimentally a slow relaxation of resistance after the application of a magnetic field and the magnetization curve hysteresis. The formation of spin glass is associated with indirect exchange of spins of localized holes via delocalized states in the region of the virtual Anderson transition. It is shown that an isotropic negative magnetoresistance observed in these structures can also be associated with spin glass properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig.1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. T. Dietl and H. Ohno, Rev. Mod. Phys. 86, 187 (2014).

    Article  ADS  Google Scholar 

  2. N. V. Agrinskaya, V. A. Berezovets, A. Bouravlev, and V. I. Kozub, Solid State Comm. 183, 2730 (2014).

    Article  Google Scholar 

  3. R. N. Bhatt and P. A. Lee, Phys. Rev. Lett. 48, 344 (1982).

    Article  ADS  Google Scholar 

  4. A. I. Veinger, A. G. Zabrodskii, T. L. Makarova, T. V. Tisnek, S. I. Goloshchapov, and P. V. Semenikhin, J. Exp. Theor. Phys. 116, 796 (2013).

    Article  ADS  Google Scholar 

  5. N. V. Agrinskaya, V. I. Kozub, and D. S. Poloskin, JETP Lett. 85, 169 (2007).

    Article  ADS  Google Scholar 

  6. N. V. Agrinskaya, V. I. Kozub, Yu. M. Galperin, and D. V. Shamshur, J. Phys.: Condens. Matter 20, 395216 (2008).

    Google Scholar 

  7. N. V. Agrinskaya, V. I. Kozub, N. Yu. Mikhailin, and D. V. Shamshur, JETP Lett. 105, 484 (2017).

    Article  ADS  Google Scholar 

  8. T. Mochizuki, R. Masutomi, and T. Okamoto, Phys. Rev. Lett. 101, 267204 (2008).

    Article  ADS  Google Scholar 

  9. Sh. Kogan, Phys. Rev. B 57, 9736 (1998).

    Article  ADS  Google Scholar 

  10. N. V. Agrinskaya, V. I. Kozub, D. V. Shamshur, and A. Shumilin, Solid State Commun. 149, 576 (2009).

    Article  ADS  Google Scholar 

  11. N. V. Agrinskaya, V. I. Kozub, D. V. Shamshur, A. V. Shumilin, and Y. M. Galperin, J. Phys.: Condens. Matter 22, 405301 (2010).

    Google Scholar 

  12. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer, Berlin, 1984).

    Book  Google Scholar 

  13. S. V. Vonsovskii, Magnetism (Nauka, Moscow, 1971; Wiley, New York, 1971).

  14. V. L. Nguen, B. Z. Spivak, and B. I. Shklovskii, JETP Lett. 41, 42 (1985);

    ADS  Google Scholar 

  15. Sov. Phys. JETP 62, 1021 (1985).

  16. B. I. Shklovskii and B. Z. Spivak, in Hopping Transport in Solids, Ed. by M. Pollak and B. Shklovskii (Elsevier, New York, 1991), p. 271.

    Google Scholar 

  17. A. K. Nigam and A. K. Majumdar, Phys. Rev. B 27, 495 (1983).

    Article  ADS  Google Scholar 

  18. T. Okamoto, T. Mochizuki, M. Minowa, K. Komatsuzaki, and R. Masutomi, J. Appl. Phys. 109, 102416 (2011).

    Article  ADS  Google Scholar 

  19. B. R. Matis, B. H. Houston, and J. W. Baldwin, ACS Nano 10 (4), 4857 (2016). https://doi.org/10.1021/acsnano.6b01982

  20. D. S. Fisher and D. A. Huse, Phys. Rev. Lett. 56, 1601 (1986).

    Article  ADS  Google Scholar 

  21. F. Barahona, Phys. Rev. B 49, 12864 (1994).

    Article  ADS  Google Scholar 

  22. F. Liers and O. C. Martin, Phys. Rev. B 76, 060405(R) (2007).

  23. R. Sepehrinia and F. Chalangari, Phys. Rev. B 97, 104201 (2018).

    Article  ADS  Google Scholar 

  24. A. K. Majumdar, Phys. Rev. B 28, 2750 (1983).

    Article  ADS  Google Scholar 

  25. A. K. Majumdar and V. Oestreich, Phys. Rev. B 30, 5342 (1984).

    Article  ADS  Google Scholar 

  26. T. K. Nature and A. K. Majumdar, Phys. Rev. B 57, 10655 (1998).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 19-02-00184). The theoretical part of this work was supported by the Foundation of Development of Theoretical Physics and Mathematics “BASIS.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shumilin.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shumilin, A.V., Kozub, V.I., Agrinskaya, N.V. et al. Spin Glass and Isotropic Negative Magnetoresistance in GaAs–AlGaAs Quantum Wells with a Virtual Anderson Transition. J. Exp. Theor. Phys. 132, 810–817 (2021). https://doi.org/10.1134/S1063776121050071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121050071

Navigation