Skip to main content
Log in

Higher Harmonic Generation of Coherent Sub-THz Radiation at Lifshitz Transition in Gapped Bilayer Graphene

  • ELECTRONIC PROPERTIES OF SOLID
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The microscopic quantum theory of nonlinear interaction of strong coherent electromagnetic radiation with gapped bilayer graphene is used for consideration of the high harmonic generation at low-energy photon excitation Lifshitz transition. The Liouville–von Neumann equation for the density matrix is solved numerically at the nonadiabatic multiphoton excitation regime. By numerical solutions, we examine the rates of the second and third harmonics generation at the particle-hole annihilation at Lifshitz transitions in the linearly polarized coherent electromagnetic wave. The obtained results show that the gapped bilayer graphene can serve as an effective medium for the generation of even and odd high harmonics in the sub-THz domain of frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Science (Washington, DC, U. S.) 306, 666 (2004).

    Article  ADS  Google Scholar 

  2. A. K. Geim, Science (Washington, DC, U. S.) 324, 1530 (2009).

    Article  ADS  Google Scholar 

  3. A. V. Rozhkov, A. O. Sboychakov, A. L. Rakhmanov, and F. Nori, Phys. Rep. 648, 1 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  4. A. H. Castro Neto, F. Guinea, N. M. R. Peres, et al., Rev. Mod. Phys. 81, 109 (2009).

    Article  ADS  Google Scholar 

  5. T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).

    Article  ADS  Google Scholar 

  6. H. K. Avetissian, Relativistic Nonlinear Electrodynamics, The QED Vacuum and Matter in Super-Strong Radiation Fields (Springer, Berlin, 2016).

    Book  MATH  Google Scholar 

  7. Sh. Ghimire, A. D. DiChiara, E. Sistrunk, et al., Nature (London, U.K.) 7, 138 (2011).

    ADS  Google Scholar 

  8. O. Schubert, M. Hohenleutner, F. Langer, et al., Nat. Photon. 8, 119 (2014).

    Article  ADS  Google Scholar 

  9. G. Vampa, T. J. Hammond, N. Thirat, et al., Nature (London, U.K.) 522, 462 (2015).

    Article  ADS  Google Scholar 

  10. G. Ndabashimiye, S. Ghimire, M. Wu, et al., Nature (London, U.K.) 534, 520 (2016).

    Article  ADS  Google Scholar 

  11. Y. S. You, D. A. Reis, and S. Ghimire, Nat. Phys. 13, 345 (2017).

    Article  Google Scholar 

  12. H. Liu, C. Guo, G. Vampa, et al., Nat. Phys. 14, 1006 (2018).

    Article  Google Scholar 

  13. S. A. Mikhailov and K. Ziegler, J. Phys.: Condens. Matter 20, 384204 (2008).

    ADS  Google Scholar 

  14. S. V. Syzranov, Ya. I. Rodionov, K. I. Kugel, and F. Nori, Phys. Rev. B 88, 241112(R) (2013).

  15. Ya. I. Rodionov, K. I. Kugel, and F. Nori, Phys. Rev. B 94, 195108 (2016).

    Article  ADS  Google Scholar 

  16. H. K. Avetissian, G. F. Mkrtchian, K. G. Batrakov, et al., Phys. Rev. B 88, 165411 (2013).

    Article  ADS  Google Scholar 

  17. P. Bowlan, E. Martinez-Moreno, K. Reimann, et al., Phys. Rev. B 89, 041408 (2014).

    Article  ADS  Google Scholar 

  18. I. Al-Naib, J. E. Sipe, and M. M. Dignam, New J. Phys. 17, 113018 (2015).

    Article  ADS  Google Scholar 

  19. L. A. Chizhova, F. Libisch, and J. Burgdorfer, Phys. Rev. B 94, 075412 (2016).

    Article  ADS  Google Scholar 

  20. H. K. Avetissian and G. F. Mkrtchian, Phys. Rev. B 94, 045419 (2016).

    Article  ADS  Google Scholar 

  21. H. K. Avetissian, A. G. Ghazaryan, G. F. Mkrtchian, et al., J. Nanophoton. 11, 016004 (2017).

    Article  ADS  Google Scholar 

  22. H. K. Avetissian, B. R Avchyan, G. F. Mkrtchian, et al., J. Nanophoton. 14, 026018 (2020).

    ADS  Google Scholar 

  23. L. A. Chizhova, F. Libisch, and J. Burgdorfer, Phys. Rev. B 95, 085436 (2017).

    Article  ADS  Google Scholar 

  24. D. Dimitrovski, L. B. Madsen, and T. G. Pedersen, Phys. Rev. B 95, 035405 (2017).

    Article  ADS  Google Scholar 

  25. N. Yoshikawa, T. Tamaya, and K. Tanaka, Science (Washington, DC, U. S.) 356, 736 (2017).

    Article  ADS  Google Scholar 

  26. A. Golub, R. Egger, C. Muller et al., Phys. Rev. Lett. 124, 110403 (2020).

    Article  ADS  Google Scholar 

  27. H. K. Avetissian and G. F. Mkrtchian, Phys. Rev. B 97, 115454 (2018).

    Article  ADS  Google Scholar 

  28. A. K. Avetissian, A. G. Ghazaryan, and Kh. V. Sedrakian, J. Nanophoton. 13, 036010 (2019).

  29. A. G. Ghazaryan and Kh. V. Sedrakian, J. Nanophoton. 13, 046004 (2019).

  30. A. G. Ghazaryan and Kh. V. Sedrakian, J. Nanophoton. 13, 046008 (2019).

  31. A. K. Avetissian, A. G. Ghazaryan, K. V. Sedrakian, et al., J. Nanophoton. 11, 036004 (2017).

    Article  ADS  Google Scholar 

  32. A. K. Avetissian, A. G. Ghazaryan, K. V. Sedrakian, et al., J. Nanophoton. 12, 016006 (2018).

    Article  ADS  Google Scholar 

  33. H. K. Avetissian, A. K. Avetissian, A. G. Ghazaryan, et al., J. Nanophoton. 14, 026004 (2020).

    ADS  Google Scholar 

  34. Yu. Bludov, N. Peres, and M. Vasilevskiy, Phys. Rev. B 101, 075415 (2020).

    Article  ADS  Google Scholar 

  35. G. L. Breton, A. Rubio, and N. Tancogne-Dejean, Phys. Rev. B 98, 165308 (2018).

    Article  ADS  Google Scholar 

  36. H. Liu, Y. Li, Y. S. You et al., Nat. Phys. 13, 262 (2017).

    Article  Google Scholar 

  37. G. F. Mkrtchian, A. Knorr, and M. Selig, Phys. Rev. B 100, 125401 (2020).

    Article  ADS  Google Scholar 

  38. H. K. Avetissian, G. F. Mkrtchian, and K. Z. Hatsagortsyan, Phys. Rev. Res. 2, 023072 (2020).

    Article  Google Scholar 

  39. H. K. Avetissian, A. K. Avetissian, B. R. Avchyan, et al., J. Phys.: Condens. Matter 30, 185302 (2018).

    ADS  Google Scholar 

  40. H. K. Avetissian, A. K. Avetissian, B. R. Avchyan, et al., Phys. Rev. B 100, 035434 (2019).

    Article  ADS  Google Scholar 

  41. T. G. Pedersen, Phys. Rev. B 95, 235419 (2017).

    Article  ADS  Google Scholar 

  42. H. K. Avetissian and G. F. Mkrtchian, Phys. Rev. B 99, 085432 (2019).

    Article  ADS  Google Scholar 

  43. S. Almalki, A. M. Parks, G. Bart, et al., Phys. Rev. B 98, 144307 (2018).

    Article  ADS  Google Scholar 

  44. B. Cheng, N. Kanda, T. N. Ikeda, et al., Rev. Lett. 124, 117402 (2020).

    Article  ADS  Google Scholar 

  45. T. Cao, Z. Li, and S. G. Louie, Phys. Rev. Lett. 114, 236602 (2015).

    Article  ADS  Google Scholar 

  46. L. Seixas, A. S. Rodin, A. Carvalho, et al., Phys. Rev. Lett. 116, 206803 (2016).

    Article  ADS  Google Scholar 

  47. H. Sevinzli, Nano Lett. 17, 2589 (2017).

    Article  ADS  Google Scholar 

  48. J. Faist, F. Capasso, D. L. Sivco, et al., Science (Washington, DC, U. S.) 264, 553 (1994).

    Article  ADS  Google Scholar 

  49. D. S. L. Abergel and T. Chakraborty, Appl. Phys. Lett. 95, 062107 (2009).

    Article  ADS  Google Scholar 

  50. E. Suarez Morell and L. E. F. Foa Torres, Phys. Rev. B 86, 125449 (2012).

    Article  ADS  Google Scholar 

  51. J. J. Dean and H. M. van Driel, Phys. Rev. B 82, 125411 (2010).

    Article  ADS  Google Scholar 

  52. S. Wu, L. Mao, A. M. Jones et al., Nano Lett. 12, 2032 (2012).

    Article  ADS  Google Scholar 

  53. Y. S. Ang, S. Sultan, and C. Zhang, Appl. Phys. Lett. 97, 243110 (2010).

    Article  ADS  Google Scholar 

  54. N. Kumar, J. Kumar, C. Gerstenkornet, et al., Phys. Rev. B 87, 121406 (2013).

    Article  ADS  Google Scholar 

  55. E. V. Castro, K. S. Novoselov, S. V. Morozov, et al., Phys. Rev. Lett. 99, 216802 (2007).

    Article  ADS  Google Scholar 

  56. J. B. Oostinga, H. B. Heersche, X. Liu, et al., Nat. Mater. 7, 151 (2008).

    Article  ADS  Google Scholar 

  57. Y. B. Zhang, T.-T. Tang, C. Girit, et al., Nature (London, U.K.) 459, 820 (2009).

    Article  ADS  Google Scholar 

  58. F. Guinea, A. H. C. Neto, and N. M. R. Peres, Phys. Rev. B 73, 245426 (2006).

    Article  ADS  Google Scholar 

  59. E. McCann and V. I. Falko, Phys. Rev. Lett. 96, 086805 (2006).

    Article  ADS  Google Scholar 

  60. M. Koshino and T. Ando, Phys. Rev. B 73, 245403 (2006).

    Article  ADS  Google Scholar 

  61. A. Varleta, M. Mucha-Kruczynski, D. Bischoff, et al., Synth. Met. 210, 19 (2015).

    Article  Google Scholar 

  62. M. Aoki and H. Amawashi, Solid State Commun. 142, 123 (2007).

    Article  ADS  Google Scholar 

  63. L. A. Falkovsky, J. Exp. Theor. Phys. 110, 319 (2010).

    Article  ADS  Google Scholar 

  64. K. Tang, R. Qin, J. Zhou, et al., J. Phys. Chem. C 115, 9458 (2011).

    Article  Google Scholar 

  65. D. Xiao, M. C. Chang, and Q. Niu, Rev. Mod. Phys. 82, 1959 (2010).

    Article  ADS  Google Scholar 

  66. L. Vicarelli, M. S Vitiello, D. Coquillat, et al., Nat. Mater. 11, 865 (2012).

    Article  ADS  Google Scholar 

  67. K. Wang, M. M. Elahi, L. Wang et al., Proc. Natl. Acad. Sci. U. S. A. 116, 201816119 (2019).

    Google Scholar 

  68. I. M. Lifshitz, Sov. Phys. JETP 11, 1130 (1960).

    Google Scholar 

  69. J. L. Manes, F. Guinea, and M. A. H. Vozmediano, Phys. Rev. B 75, 155424 (2007).

    Article  ADS  Google Scholar 

  70. G. P. Mikitik and Yu. V. Sharlai, Phys. Rev. B 77, 113407 (2008).

    Article  ADS  Google Scholar 

  71. E. McCann, Phys. Rev. B 74, 161403 (2006).

    Article  ADS  Google Scholar 

  72. H. Min, B. Sahu, S. Banerjee, and A. H. MacDonald, Phys. Rev. B 75, 155115 (2007).

    Article  ADS  Google Scholar 

  73. E. McCann, D. Abergel, and V. Falko, Solid State Commun. 143, 110 (2007).

    Article  ADS  Google Scholar 

  74. M. Mucha-Kruczynski, E. McCann, and V. I. Falko, Solid State Commun. 149, 1111 (2009).

    Article  ADS  Google Scholar 

  75. D. Suszalski, G. Rut, and A. Rycerz, Phys. Rev. B 97, 125403 (2018).

    Article  ADS  Google Scholar 

  76. M. Mucha-Kruczynski, I. L. Aleiner, and V. I. Falko, Phys. Rev. B 84, 041404 (2011).

    Article  ADS  Google Scholar 

  77. M. Mucha-Kruczynski, I. L. Aleiner, and V. I. Falko, Solid State Commun. 151, 1088 (2011).

    Article  ADS  Google Scholar 

  78. A. Varlet, D. Bischo, P. Simonet, et al., Phys. Rev. Lett. 113, 116602 (2014).

    Article  ADS  Google Scholar 

  79. A. Varlet, M. Mucha-Kruczynski, D. Bischo, et al., Synth. Met. 210, 19 (2015).

    Article  Google Scholar 

  80. L. V. Keldysh, Sov. Phys. JETP 7, 788 (1958).

    Google Scholar 

  81. L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1965).

    Google Scholar 

  82. I. F. Akyildiz, J. M. Jornet, and C. Han, Phys. Commun. 12, 16 (2014).

    Article  Google Scholar 

  83. H. Vettikalladi, W. T. Sethi, A. F. Bin Abas, et al., Int. J. Anten. Propagat. 2019, 9573647 (2019).

    Google Scholar 

  84. M. Lewenstein, Ph. Balcou, M. Yu. Ivanov, et al., Phys. Rev. A 49, 2117 (1994).

    Article  ADS  Google Scholar 

  85. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons and Atoms. Introduction to Quantum Electrodynamics (Wiley, New York, 1989).

    Google Scholar 

  86. E. H. Hwang and S. Das Sarma, Phys. Rev. B 77, 115449 (2008).

    Article  ADS  Google Scholar 

  87. J. K. Viljas and T. T. Heikkila, Phys. Rev. B 81, 245404 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Ghazaryan.

APPENDIX

APPENDIX

The Liouville–von Neumann equation for a single-particle density matrix can be presented by the form

$${{\rho }_{{\alpha ,\beta }}}({\mathbf{p}},t) = \langle \hat {a}_{{{\mathbf{p}},\beta }}^{\dag }(t){{\hat {a}}_{{{\mathbf{p}},\alpha }}}(t)\rangle ,$$
(25)

where \({{\hat {a}}_{{{\mathbf{p}},\alpha }}}\)(t) obeys the Heisenberg equation

$$i\hbar \frac{{\partial {{{\hat {a}}}_{{{\mathbf{p}},\alpha }}}(t)}}{{\partial t}} = [{{\hat {a}}_{{{\mathbf{p}},\alpha }}}(t),\hat {H}].$$
(26)

Due to the homogeneity of the problem we only need the p-diagonal elements of the density matrix. So, taking into account Eqs. (11)–(26), the evolutionary-equation will be

$$\begin{gathered} i\hbar \frac{{\partial {{\rho }_{{\alpha ,\beta }}}({\mathbf{p}},t)}}{{\partial t}} - i\hbar e{\mathbf{E}}(t)\frac{{\partial {{\rho }_{{\alpha ,\beta }}}({\mathbf{p}},t)}}{{\partial {\mathbf{p}}}} \\ = ({{\mathcal{E}}_{\alpha }}({\mathbf{p}}) - {{\mathcal{E}}_{\beta }}({\mathbf{p}}) - i\hbar \Gamma (1 - {{\delta }_{{\alpha \beta }}})){{\rho }_{{\alpha ,\beta }}}({\mathbf{p}},t) \\ + \,{\mathbf{E}}(t)({{D}_{m}}(\alpha ,{\mathbf{p}}) - {{D}_{m}}(\beta ,{\mathbf{p}})){{\rho }_{{\alpha ,\beta }}}({\mathbf{p}},t) \\ + \,{\mathbf{E}}(t)[{{D}_{t}}(\alpha ,{\mathbf{p}}){{\rho }_{{ - \alpha ,\beta }}}({\mathbf{p}},t) - {{D}_{t}}( - \beta ,{\mathbf{p}}){{\rho }_{{\alpha , - \beta }}}({\mathbf{p}},t)], \\ \end{gathered} $$
(27)

nondiagonal Γ—the damping rate. In Eq. (27) the nondiagonal elements are interband polarization ρ1, –1(p, t) = P(p, t) and its complex conjugate ρ–1, 1(p, t) = P*(p, t), and the diagonal elements represent particle distribution functions for conduction Nc(p, t) = ρ1,1(p, t) and valence \({{N}_{{v}}}\)(p, t) = ρ–1,1(p, t) bands. We will solve the set of differential equations for these functions:

$$\begin{gathered} i\hbar \frac{{\partial {{N}_{c}}({\mathbf{p}},t)}}{{\partial t}} - i\hbar e{\mathbf{E}}(t)\frac{{\partial {{N}_{c}}({\mathbf{p}},t)}}{{\partial {\mathbf{p}}}} \\ = {\mathbf{E}}(t){{{\mathbf{D}}}_{t}}({\mathbf{p}})P{\text{*}}({\mathbf{p}},t) - {\mathbf{E}}(t){\mathbf{D}}_{t}^{*}({\mathbf{p}})P({\mathbf{p}},t), \\ \end{gathered} $$
(28)
$$\begin{gathered} i\hbar \frac{{\partial {{N}_{{v}}}({\mathbf{p}},t)}}{{\partial t}} - i\hbar e{\mathbf{E}}(t)\frac{{\partial {{N}_{{v}}}({\mathbf{p}},t)}}{{\partial {\mathbf{p}}}} \\ = - {\mathbf{E}}(t){{{\mathbf{D}}}_{t}}({\mathbf{p}})P{\text{*}}({\mathbf{p}},t) + {\mathbf{E}}(t){\mathbf{D}}_{t}^{*}({\mathbf{p}})P({\mathbf{p}},t), \\ \end{gathered} $$
(29)
$$\begin{gathered} i\hbar \frac{{\partial P({\mathbf{p}},t)}}{{\partial t}} - i\hbar e{\mathbf{E}}(t)\frac{{\partial P({\mathbf{p}},t)}}{{\partial {\mathbf{p}}}} \\ = [2{{\mathcal{E}}_{1}}({\mathbf{p}}) + {\mathbf{E}}(t){{{\mathbf{D}}}_{m}}({\mathbf{p}}) - i\hbar \Gamma ]P({\mathbf{p}},t) \\ + \,{\mathbf{E}}(t){{{\mathbf{D}}}_{t}}({\mathbf{p}})[{{N}_{{v}}}({\mathbf{p}},t) - {{N}_{c}}({\mathbf{p}},t)]. \\ \end{gathered} $$
(30)

The total mean dipole moments are

$$\begin{gathered} {{D}_{{xm}}}({\mathbf{p}}) = - \frac{{e\hbar U}}{{2{{\mathcal{E}}_{1}}({\mathbf{p}})(\mathcal{E}_{1}^{2}({\mathbf{p}}) - {{U}^{2}}{\text{/}}4)}} \\ \times \left[ {\left( {\frac{{{{p}^{2}}}}{{2m}} - m{v}_{3}^{2}} \right)\frac{{\zeta {{p}_{y}}}}{m} + \frac{{{{{v}}_{3}}}}{m}{{p}_{x}}{{p}_{y}}} \right], \\ \end{gathered} $$
(31)
$$\begin{gathered} {{D}_{{ym}}}({\mathbf{p}}) - \frac{{e\hbar U}}{{2{{\mathcal{E}}_{1}}({\mathbf{p}})(\mathcal{E}_{1}^{2}({\mathbf{p}}) - {{U}^{2}}{\text{/}}4)}} \\ \times \left[ {\left( { - \frac{{{{p}^{2}}}}{{2m}} + m{v}_{3}^{2}} \right)\frac{{\zeta {{p}_{x}}}}{m} + \frac{{{{{v}}_{3}}}}{{2m}}(p_{x}^{2} - p_{y}^{2})} \right]. \\ \end{gathered} $$
(32)

The components of the transition dipole moments are calculated via Eq. (14) by spinor wave functions (6) (see also in [30, 33]):

$$\begin{gathered} {{D}_{{tx}}}({\mathbf{p}}) = \frac{{e\hbar }}{{2{{\mathcal{E}}_{1}}({\mathbf{p}})\sqrt {\mathcal{E}_{1}^{2}({\mathbf{p}}) - {{U}^{2}}{\text{/}}4} }} \\ \times \left( {\left[ {\left( {\frac{{{{p}^{2}}}}{{2m}} - m{v}_{3}^{2}} \right)\frac{{\zeta {{p}_{y}}}}{m} + \frac{{{{{v}}_{3}}}}{m}{{p}_{x}}{{p}_{y}}} \right]} \right. \\ \left. { - \,i\frac{U}{{2{{\mathcal{E}}_{1}}}}\left\{ {\left( {\frac{{{{p}^{2}}}}{{2m}} + m{v}_{3}^{2}} \right)\frac{{{{p}_{x}}}}{m} - \frac{{3\zeta {{{v}}_{3}}}}{{2m}}(p_{x}^{2} - p_{y}^{2})} \right\}} \right), \\ \end{gathered} $$
(33)
$$\begin{gathered} {{D}_{{ty}}}({\mathbf{p}}) = \frac{{e\hbar }}{{2{{\mathcal{E}}_{1}}({\mathbf{p}})\sqrt {\mathcal{E}_{1}^{2}({\mathbf{p}}) - {{U}^{2}}{\text{/}}4} }} \\ \times \left( {\left[ {\left( { - \frac{{{{p}^{2}}}}{{2m}} - m{v}_{3}^{2}} \right)\frac{{\zeta {{p}_{x}}}}{m} + \frac{{{{{v}}_{3}}}}{{2m}}(p_{x}^{2} - p_{y}^{2})} \right]} \right. \\ \left. { - \,i\frac{U}{{2{{\mathcal{E}}_{1}}}}\left\{ {\left( {\frac{{{{p}^{2}}}}{{2m}} + m{v}_{3}^{2}} \right)\frac{{{{p}_{y}}}}{m} - \frac{{3\zeta {{{v}}_{3}}}}{{2m}}{{p}_{x}}{{p}_{y}}} \right\}} \right). \\ \end{gathered} $$
(34)

The components of the velocity operator given by the relation \({{{\mathbf{\hat {v}}}}_{\zeta }}\) = ∂\(\hat {H}\)/∂\({\mathbf{\hat {p}}}\) for the effective 2 × 2 Hamiltonian (3), can be presented by the expressions:

$${{{\hat {v}}}_{{\zeta x}}} = \zeta \left( {\begin{array}{*{20}{c}} 0&{ - \frac{1}{m}(\zeta {{{\hat {p}}}_{x}} - i{{{\hat {p}}}_{y}}) + {{{v}}_{3}}} \\ { - \frac{1}{m}(\zeta {{{\hat {p}}}_{x}} + i{{{\hat {p}}}_{y}}) + {{{v}}_{3}}}&0 \end{array}} \right),$$
(35)
$${{{\hat {v}}}_{{\zeta Y}}} = i\left( {\begin{array}{*{20}{c}} 0&{\frac{1}{m}(\zeta {{{\hat {p}}}_{x}} - i{{{\hat {p}}}_{y}}) + {{{v}}_{3}}} \\ { - \frac{1}{m}(\zeta {{{\hat {p}}}_{x}} + i{{{\hat {p}}}_{y}}) - {{{v}}_{3}}}&0 \end{array}} \right).$$
(36)

The intraband velocity V'(p) at HHG in bilayer AB-stacked graphene is given by the formula:

$$\begin{gathered} {\mathbf{V}}{\kern 1pt} '({\mathbf{p}}) = \left[ {{{{v}}_{3}}{\mathbf{p}} - 3\zeta \frac{{{{{v}}_{3}}p}}{{2m}}{\mathbf{p}}\cos 3\vartheta } \right. \\ \left. { + 3\zeta \frac{{{{{v}}_{3}}{{p}^{3}}}}{{2m}}\sin 3\vartheta \frac{{\partial \vartheta }}{{\partial {\mathbf{p}}}} + 2\frac{{{{{\mathbf{p}}}^{2}}}}{{{{{(2m)}}^{2}}}}} \right]\mathcal{E}_{1}^{{ - 1}}({\mathbf{p}}). \\ \end{gathered} $$
(37)

The author is deeply grateful to prof. H.K. Avetissian for permanent discussions and valuable recommendations. This work was supported by the Science Committee of Ministry of Education, Science, Culture and Sport of RA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghazaryan, A.G. Higher Harmonic Generation of Coherent Sub-THz Radiation at Lifshitz Transition in Gapped Bilayer Graphene. J. Exp. Theor. Phys. 132, 843–851 (2021). https://doi.org/10.1134/S1063776121050034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121050034

Navigation