Skip to main content
Log in

Influence of (0, 1)* Laguerre-Gaussian Field Distribution on Tunneling Ionization Rate

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

In the frame of the ADK theory, the tunneling ionization of an argon atom exposed to the light from Ti:Sapphire laser is investigated. We assume that the laser field is the radially polarized beam with donut. (0, 1)* Laguerre-Gaussian field distribution. Considering that LG (0, 1)* modes can appear with random or uniform polarization (linear, circular or elliptical), we analyzed behavior of transition rate in all three types. We computed transition rate in basic case and in the case when the initial momentum of the ejected electron is included in the equation. Also, we analyzed influence of the modified initial ionization potential of ionized electron on transition rate. In the basic case, we got what we expected but with included effect we find appearance of two transition rate peaks at a certain point of the electron’s exit from the barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. N. I. Shvetsov-Shilovski, D. Dimitrovski, and L. B. Madsen, Phys. Rev. A 85, 023428 (2012).

    Article  ADS  Google Scholar 

  2. J. E. Calvert, Han Xu, A. J. Palmer, et al., Sci. Rep. 6, 34101 (2016).

    Article  ADS  Google Scholar 

  3. Y. H. Lai, J. Xu, U. B. Szafruga, et al., Phys. Rev. A 96, 063417 (2017)

    Article  ADS  Google Scholar 

  4. N. I. Shvetsov-Shilovski, M. Lein, and K. Tökési, Eur. Phys. J. D 73, 37 (2019).

    Article  ADS  Google Scholar 

  5. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1989, 4th ed.; Pergamon, New York, 1977, 3rd ed.).

  6. L.V. Keldysh, Sov. Phys. JETP 20, 1307 (1965).

    Google Scholar 

  7. A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, Sov. Phys. JETP 23, 924 (1966).

    ADS  Google Scholar 

  8. V. M. Ammosov, N. B. Delone, and V. P. Krainov, Sov. Phys. JETP 64, 1191 (1986).

    Google Scholar 

  9. V. S. Popov, J. Exp. Theor. Phys. 91, 48 (2000).

    Article  ADS  Google Scholar 

  10. C. L. Wang, X. Y. Lai, Z. L. Hu, et al., Phys. Rev. A 90, 013422 (2014).

    Article  ADS  Google Scholar 

  11. M. Yuan, P. P. Xin, T. S. Chu, and H. P. Liu, Opt. Express 25, 23493 (2017).

    Article  ADS  Google Scholar 

  12. J. Cai, Y. J. Chen, Q. Z. Xia, et al., Phys. Rev. A 96, 033413 (2017).

    Article  ADS  Google Scholar 

  13. R. Wang, Q. Zhang, D. Li, et al., Opt. Express 27, 6471 (2019).

    Article  ADS  Google Scholar 

  14. M. Lein, J. Mod. Opt. 58, 1188 (2011).

    Article  ADS  Google Scholar 

  15. D. G. Arbó, C. Lemell, and J. Burgdörfer, J. Phys.: Conf. Ser. 635, 012003 (2015).

    Google Scholar 

  16. W. Quan, M. Yuan, S. Yu, et al., Opt. Express 24, 23248 (2016)

    Article  ADS  Google Scholar 

  17. A. S. Stodolna, F. Lépine, T. Bergeman, et al., Phys. Rev. Lett. 113, 103002 (2014).

    Article  ADS  Google Scholar 

  18. H. Moradi, V. Shahabadi, E. Madadi, et al., Opt. Express 27, 7266 (2019).

    Article  ADS  Google Scholar 

  19. M. Kaur and D. N. Gupta, IEEE Trans. Plasma Sci. 45, 2841 (2017).

    Article  ADS  Google Scholar 

  20. Y. Kozawa, T. Hibi, A. Sato, et al., Opt. Express 19, 15947 (2011).

    Article  ADS  Google Scholar 

  21. C. Hnatovsky, V. G. Shvedov, and W. Krolikowski, Opt. Express 21, 12651 (2013).

    Article  ADS  Google Scholar 

  22. S. Quabis, R. Dorn, M. Eberler, et al., Opt. Commun. 179, 1 (2000).

    Article  ADS  Google Scholar 

  23. I. Moshe, S. Jackel, Y. Lumer, et al., in Proceedings of the CLEO/Europe and EQEC 2011 Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CA9_5.

  24. T. L. Jefferson-Brain, C. R. Smith, M. D. Burns, et al., Appl. Phys. B 125, 167 (2019).

    Article  ADS  Google Scholar 

  25. Y. Ma, Opt. Rev. 19, 39 (2012).

    Article  Google Scholar 

  26. R. Oron, N. Davidson, A. A. Friesem, and E. Hasman, Opt. Lett. 25, 939 (2000).

    Article  ADS  Google Scholar 

  27. G. Machavariani, Y. Lumer, I. Moshe, and S. Jackel, Opt. Commun. 271, 190 (2007).

    Article  ADS  Google Scholar 

  28. V. M. Ristić, T. B. Miladinović, and M. M. Radulović, Laser Phys. 18, 1183 (2008).

    Article  ADS  Google Scholar 

  29. H. R. Reiss, Phys. Rev. Lett. 101, 043002 (2008).

    Article  ADS  Google Scholar 

  30. N. B. Delone and V. P. Krainov, Phys. Usp. 41, 469 (1998).

    Article  ADS  Google Scholar 

  31. N. B. Delone and V. P. Krainov, Phys. Usp. 42, 669 (1999).

    Article  ADS  Google Scholar 

  32. E. A. Volkova, A. M. Popov, and O. V. Tikhonova, J. Exp. Theor. Phys. 113, 394 (2011).

    Article  ADS  Google Scholar 

  33. J. Mitroy, M. S. Safronova, and Ch. W. Clark, J. Phys. B: At., Mol. Opt. Phys. 43, 20201 (2010).

    Article  Google Scholar 

  34. D. Bauer, Theory of Laser–Matter Interaction (Max-Planck Inst., Heidelberg, 2002).

    Google Scholar 

  35. G. Machavariani, N. Davidson, Y. Lumer, et al., in Proceedings of the 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference, Munich, 2007, p. 1.

  36. D. J. Armstrong, M. C. Phillips, and A. V. Smith, Appl. Opt. 42, 3550 (2003).

    Article  ADS  Google Scholar 

  37. C. Maurer, A. Jesacher, S. Fürhapter, et al., New J. Phys. 9, 78 (2007).

    Article  ADS  Google Scholar 

  38. J. Ouyang, W. Perrie, O. J. Allegre, et al., Opt. Express 23, 12562 (2015).

    Article  ADS  Google Scholar 

  39. V. E. Lembessis and M. Babiker, Phys. Rev. A 81, 033811 (2010).

    Article  ADS  Google Scholar 

  40. J. Courtial, D. A. Robertson, K. Dholakia, et al., Phys. Rev. Lett. 81, 4828 (1998).

    Article  ADS  Google Scholar 

  41. S. Vyas, Y. Kozawa, and Y. Miyamoto, Opt. Express 23, 33970 (2015).

    Article  ADS  Google Scholar 

  42. N. B. Delone and V. P. Krainov, Multiphoton Processes in Atoms (Springer, Berlin, 2000).

    Book  Google Scholar 

  43. C. Z. Bisgaard and L. B. Madsen, Am. J. Phys. 72, 249 (2004).

    Article  ADS  Google Scholar 

  44. R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).

    Article  ADS  Google Scholar 

  45. K. M. Tanvir Ahmmed, C. Grambow, and A. M. Kietzig, Micromachines 5, 1219 (2014).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge funding provided by the University of Kragujevac - Institute for Information Technologies (the contract 451-03-68/2020-14/200378), University of Kragujevac - Faculty of Science (the contract 451-03-68/2020-14/200122) through the grants by the Ministry of Education, Science and Technological Development of the Republic of Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. B. Miladinović.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miladinović, T.B., Simić, S., Danilović, N. et al. Influence of (0, 1)* Laguerre-Gaussian Field Distribution on Tunneling Ionization Rate. J. Exp. Theor. Phys. 132, 753–765 (2021). https://doi.org/10.1134/S1063776121050046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121050046

Navigation