Skip to main content
Log in

Magnetotransport Effects and Electronic Phase Separation in Manganese Sulfides with Electron–Hole Doping

  • ELECTRONIC PROPERTIES OF SOLID
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We analyze the effect of electron and hole doping with a low substituent concentration (x = 0.01) on the magnetic and electron subsystems in disordered semiconductors MexMn1 – xS (Me = Ag and Tm) in a wide range of temperatures (77–1000 K) and magnetic fields up to 12 kOe. Using magnetic measurements, we have established the domains of ferron (polaron) formation in the vicinity of the magnetic phase transition. We have detected the magnetoimpedance and magnetoresistance, the magnitude and sign of which depend on the electric field, temperature, and the type of the substituent element. We have determined the temperatures of thermopower peaks associated with deformation of the crystalline structure. We have established the phonon and magnon contributions to charge carrier relaxation using the method of impedance spectroscopy and the Jahn–Teller mode of oscillations from the IR spectra for the system containing silver. We have determined the diffusion contribution to the conductivity from the impedance hodograph in TmxMn1 – xS semiconductors. The experimental results are described using the models of supermagnetic clusters, ferroelectric domains, and the Debye model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. X. Wang, Y. Du, S. X. Dou, et al., Phys. Rev. Lett. 108, 266806 (2012).

    Article  ADS  Google Scholar 

  2. J.-S. Kang, E. Lee, S. Seong, et al., Philos. Mag. Lett. 100, 1258 (2020).

    Article  ADS  Google Scholar 

  3. H. T. He, H. C. Liu, B. K. Li, et al., Appl. Phys. Lett. 103, 031606 (2013).

    Article  ADS  Google Scholar 

  4. A. A. Abrikosov, Phys. Rev. B 58, 2788 (1998).

    Article  ADS  Google Scholar 

  5. Sh. M. Alekperova, I. A. Akhmedov, G. S. Gadzhieva, and Kh. D. Dzhalilova, Phys. Solid State 49, 512 (2007).

    Article  ADS  Google Scholar 

  6. S. S. Aplesnin and M. N. Sitnikov, JETP Lett. 100, 95 (2014).

    Article  ADS  Google Scholar 

  7. S. S. Aplesnin, O. B. Romanova, O. F. Demidenko, and K. I. Yanushkevich, Magnetic Phase Transitions and Kinetic Properties of 3d-Metal Chalcogenides (Sib. Gos. Aerokosm. Univ., Krasnoyarsk, 2017) [in Russian].

    Google Scholar 

  8. S. S. Aplesnin, L. I. Ryabinkina, O. B. Romanova, V. V. Sokolov, A. Yu. Pichugin, A. I. Galyas, O. F. Demidenko, G. I. Makovetski, and K. I. Yanushkevich, Phys. Solid State 51, 698 (2009).

    Article  ADS  Google Scholar 

  9. O. B. Romanova, L. I. Ryabinkina, V. V. Sokolov, et al., Solid State Commun. 150, 602 (2010).

    Article  ADS  Google Scholar 

  10. E. L. Nagaev, Physics of Magnetic Semiconductors (Nauka, Moscow, 1979; Mir, Moscow, 1983).

  11. H. H. Heikens, C. F. van Bruggen, and C. J. Haas, Phys. Chem. Solids 39, 833 (1972).

    Article  Google Scholar 

  12. D. J. Vaughan and J. R. Craig, Mineral Chemistry of Metal Sulfides (Cambridge Univ. Press, Cambridge, 1978).

    Google Scholar 

  13. G. A. Petrakovskii, S. S. Aplesnin, G. V. Loseva, et al., Sov. Phys. Solid State 33, 233 (1991).

    Google Scholar 

  14. B. Morosin, Phys. Rev. B 1, 236 (1970).

    Article  ADS  Google Scholar 

  15. Yu. V. Gerasimova, G. M. Abramova, Z. V. Zhandun, et al., J. Raman Spectrosc. 50, 1572 (2019).

    Article  ADS  Google Scholar 

  16. S. S. Aplesnin, G. A. Petrakovskii, L. I. Ryabinkina, et al., Solid State Commun. 129, 195 (2004).

    Article  ADS  Google Scholar 

  17. S. S. Aplesnin, L. I. Ryabinkina, G. M. Abramova, et al., Phys. Rev. B 71, 125204 (2005).

    Article  ADS  Google Scholar 

  18. S. S. Aplesnin, M. N. Sitnikov, O. B. Romanova, et al., Phys. Status Solidi B 253, 1771 (2016).

    Article  ADS  Google Scholar 

  19. S. S. Aplesnin, A. M. Kharkov, O. B. Romanova, et al., J. Magn. Magn. Mater. 352, 1 (2014).

    Article  ADS  Google Scholar 

  20. R. C. Vickery and H. M. Muir, Adv. Energy Conv. 1, 179 (1961).

    Article  Google Scholar 

  21. Wenhao Xing, Naizheng Wang, Yangwu Guo, et al., Dalton Trans. 48, 17620 (2019).

    Article  Google Scholar 

  22. K. I. Kugel, A. L. Rakhmanov, A. O. Sboychakov, et al., Phys. Rev. B 78, 155113 (2008).

    Article  ADS  Google Scholar 

  23. S. S. Aplesnin, M. N. Sitnikov, A. M. Kharkov, et al., Phys. Status Solidi B 256, 1900043 (2019).

    Article  ADS  Google Scholar 

  24. O. B. Romanova, S. S. Aplesnin, L. V. Udod, et al., J. Appl. Phys. 125, 175706 (2019).

    Article  ADS  Google Scholar 

  25. G. A. Petrakovskii, L. I. Ryabinkina, G. M. Abramova, A. D. Balaev, O. B. Romanova, G. I. Makovetskii, K. I. Yanushkevich, and A. I. Galyas, Phys. Solid State 44, 1925 (2002).

    Article  ADS  Google Scholar 

  26. J. S. Smart, J. Phys. Chem. 11, 97 (1959).

    Google Scholar 

  27. S. Yunoki, J. Hu, A. L. Malvezzi, et al., Phys. Rev. Lett. 80, 845 (1998).

    Article  ADS  Google Scholar 

  28. M. Yu. Kagan and K. I. Kugel’, Phys. Usp. 44, 553 (2001).

    Article  ADS  Google Scholar 

  29. E. G. Batyev, Phys. Usp. 52, 1245 (2009).

    Article  ADS  Google Scholar 

  30. R. M. White, Quantum Theory of Magnetism (Springer, Berlin, Heidelberg, New York, 1983).

    Book  Google Scholar 

  31. E. L. Nagaev, Phys. Usp. 39, 781 (1996).

    Article  ADS  Google Scholar 

  32. H. H. Heikens, G. A. Wiegers, and C. F. van Bruggen, Solid State Commun. 24, 205 (1977).

    Article  ADS  Google Scholar 

  33. S. S. Aplesnin, Magnetic and Electrical Properties of Strongly Correlated Magnetic Semiconductors with Four-Spin Coupling with Orbital Ordering (Nauka, Moscow, 2013) [in Russian].

    Google Scholar 

  34. A. V. Malakhovskii, T. P. Morozova, V. N. Zabluda, et al., Sov. Phys. Solid State 32, 596 (1990).

    Google Scholar 

  35. M. M. Parish and P. B. Littlewood, Nature (London, U.K.) 426, 162 (2003).

    Article  ADS  Google Scholar 

  36. V. I. Zinenko and N. G. Zamkova, Phys. Solid State 43, 2290 (2001).

    Article  ADS  Google Scholar 

  37. Md. M. Hossain Polash, F. Mohaddes, M. Rasoulianboroujeni, et al., J. Mater. Chem. C 8, 4049 (2020).

  38. C. Kittel, Elementary Statistical Physics (Wiley, New York, 1965).

    Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research and the Belarussian Republic Foundation for Basic Research (project no. 20-52-00005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. B. Romanova or S. S. Aplesnin.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanova, O.B., Aplesnin, S.S., Sitnikov, M.N. et al. Magnetotransport Effects and Electronic Phase Separation in Manganese Sulfides with Electron–Hole Doping. J. Exp. Theor. Phys. 132, 831–842 (2021). https://doi.org/10.1134/S106377612103016X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377612103016X

Navigation