Skip to main content
Log in

Similarity Laws for the Green Function of the Nonstationary Superdiffusive Transport: Lévy Walks and Lévy Flights

  • STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We obtain an analytic description of the excitation front propagation in a medium during nonstationary superdiffusive (nonlocal) transport in the case of a finite fixed velocity of perturbation carriers (so-called Lévy walks with stops). This problem embraces phenomena such as resonance radiation transport in astrophysical gases and plasma, biological migration, and energy transfer by waves in a plasma. In this approach, the result obtained by integrating the exact solution to the kinetic equation for the Green function is independent of the coordinate space dimensionality. The results are compared with data obtained using another more exact method of determining the front and with the results of numerical calculations of the statistics of trajectories using the Monte Carlo method. Comparison demonstrates the applicability of our results in a wide range of parameters of the problem. We propose a universal description of the perturbation front dynamics in the medium for an arbitrary (including infinitely high) fixed velocity of perturbation carriers. This corresponds to the combination of expressions for the front in the case of transport by Lévy flights and by Lévy walks. We consider the criteria of transition between these regimes of the superdiffusive transport, which corresponds, in particular, to the account for the finite velocity of light in the superdiffusive transport of resonance radiation in gases and plasmas. For Lévy walks, we have obtained a relation between the integral characteristic of perturbation of the medium and its carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. A. B. Kukushkin and A. A. Kulichenko, Phys. Scr. 94, 115009 (2019).

    Article  ADS  Google Scholar 

  2. A. A. Kulichenko and A. B. Kukushkin, J. Exp. Theor. Phys. 130, 873 (2020).

    Article  ADS  Google Scholar 

  3. A. A. Kulichenko and A. B. Kukushkin, Int. Rev. At. Mol. Phys. 8, 5 (2017).

    Google Scholar 

  4. M. F. Shlesinger, J. Klafter, and J. Wong, J. Stat. Phys. 27, 499 (1982).

    Article  ADS  Google Scholar 

  5. V. Zaburdaev, S. Denisov, and J. Klafter, Rev. Mod. Phys. 87, 483 (2015).

    Article  ADS  Google Scholar 

  6. V. Yu. Zaburdaev and K. V. Chukbar, J. Exp. Theor. Phys. 94, 252 (2002).

    Article  ADS  Google Scholar 

  7. V. Yu. Zaburdaev and K. V. Chukbar, JETP Lett. 77, 551 (2003).

    Article  ADS  Google Scholar 

  8. L. M. Biberman, Zh. Eksp. Teor. Fiz. 17, 416 (1947).

    Google Scholar 

  9. T. Holstein, Phys. Rev. 72, 1212 (1947).

    Article  ADS  Google Scholar 

  10. L. M. Biberman, V. S. Vorob’ev, and I. T. Yakubov, Kinetics of Nonequilibrium Low-Temperature Plasmas (Consultant Bureau, New York, 1987; Nauka, Moscow, 1982).

  11. B. A. Veklenko, Sov. Phys. JETP 9, 139 (1959).

    MathSciNet  Google Scholar 

  12. V. I. Kogan, in Proceedings of the 8th International Conference on Phenomena in Ionized Gases ICPIG (IAEA, Vienna, 1968), p. 583.

  13. V. A. Abramov, V. I. Kogan, and V. S. Lisitsa, in Problems of Plasma Theory, Collection of Articles, Ed. by M. A. Leontovich and B. B. Kadomtsev (Energoatomizdat, Moscow, 1982), No. 12, p. 114 [in Russian].

  14. V. I. Kogan, in Encyclopedy of Low Temperature Plasma, Ed. by V. E. Fortov (Nauka, Moscow, 2000), Vol. 1, p. 481 [in Russian].

    Google Scholar 

  15. A. B. Kukushkin and P. A. Sdvizhenskii, J. Phys. A: Math. Theor. 49, 255002 (2016).

    Article  ADS  Google Scholar 

  16. A. B. Kukushkin and P. A. Sdvizhenskii, J. Phys.: Conf. Ser. 941, 012050 (2017).

    Google Scholar 

  17. A. B. Kukushkin, V. S. Neverov, P. A. Sdvizhenskii, and V. V. Voloshinov, Int. J. Open Inform. Technol. 6, 38 (2018).

    Google Scholar 

  18. A. B. Kukushkin, V. S. Neverov, P. A. Sdvizhenskii, and V. V. Voloshinov, Atoms 6, 43 (2018).

    Article  ADS  Google Scholar 

  19. B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, New York, 1982).

    MATH  Google Scholar 

  20. M. Shlesinger, G. M. Zaslavsky, and U. Frisch, Lévy Flights and Related Topics in Physics (Springer, New York, 1995).

    Book  Google Scholar 

  21. A. A. Dubkov, B. Spagnolo, and V. V. Uchaikin, Int. J. Bifurcat. Chaos 18, 2649 (2008).

    Article  Google Scholar 

  22. J. Klafter and I. M. Sokolov, Phys. World 18, 29 (2005).

    Article  Google Scholar 

  23. I. I. Eliazar and M. F. Shlesinger, Phys. Rep. 527, 101 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  24. V. V. Ivanov, Radiation Transfer and Spectra of Celestial Bodies (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  25. I. N. Minin, The Theory of Radiation Transfer in the Planet Atmospheres (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  26. Radiation Mechanisms of Astrophysical Objects: Classics Today (in honor of V. V. Sobolev), Ed. by V. Grinin (St. Petersburg, 2015) [in Russian].

    Google Scholar 

  27. A. B. Kukushkin, V. S. Lisitsa, and Yu. A. Savel’ev, JETP Lett. 46, 448 (1987).

    ADS  Google Scholar 

  28. L. M. Biberman, Dokl. Akad. Nauk SSSR 49, 659 (1948).

    Google Scholar 

  29. Methods in Radiative Transfer, Ed. by W. Kalkofen (Cambridge Univ. Press, Cambridge, 1984).

    Google Scholar 

  30. G. B. Rybicki, in Methods in Radiative Transfer, Ed. by W. Kalkofen (Cambridge Univ. Press, Cambridge, 1984), Chap. 1.

    Google Scholar 

  31. L. M. Biberman, V. S. Vorob’ev, and A. N. Lagar’kov, Opt. Spektrosk. 19, 326 (1965).

    Google Scholar 

  32. A. P. Napartovich, Teplofiz. Vys. Temp. 9, 26 (1971).

    Google Scholar 

  33. A. N. Starostin, in Encyclopedy of Low Temperature Plasma, Ed. by V. E. Fortov (Nauka, Moscow, 2000), Vol. 1, p. 471 [in Russian].

    Google Scholar 

  34. A. V. Sokolov and V. V. Voloshinov, Int. J. Open Inform. Technol. 6 (9), 33 (2018).

    Google Scholar 

  35. A. V. Sokolov and V. V. Voloshinov, Open Comp. Sci. 10, 283 (2020).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to K.V. Chukbar for fruitful discussions of the papers [6, 7].

This work was performed using the computer resources of the Federal Collective Usage Center “Complex for Simulating and Data Processing for Mega-Science Facilities of the National Research Center “Kurchatov Institute,” http://ckp.nrcki.ru/.

Funding

This study was supported in part by the Russian Foundation for Basic Research (project nos. 18-07-01269-a and 19-32-90281) and by the program for improving the competitiveness of National Research Nuclear University MEPhI.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. B. Kukushkin, A. A. Kulichenko or A. V. Sokolov.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kukushkin, A.B., Kulichenko, A.A. & Sokolov, A.V. Similarity Laws for the Green Function of the Nonstationary Superdiffusive Transport: Lévy Walks and Lévy Flights. J. Exp. Theor. Phys. 132, 865–881 (2021). https://doi.org/10.1134/S1063776121050125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121050125

Navigation