Skip to main content
Log in

Agglomeration of Nanowires on a Substrate for Surface-Enhanced Raman Scattering

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

An energy criterion is proposed for the level of agglomeration (coalescence) of nanowires fixed at the base on a rigid substrate and immersed in a continuous medium (air, liquid), which excludes capillary phenomena. This criterion, based on the competition between the elastic energy of a bent nanowire and its surface formation energy, can also be applied to the attachment of nanowires to a surface and (in a modified form) to the coalescence of details of micro- and nanomachines. Nanowires for surface-enhanced Raman scattering, obtained by template synthesis based on track membranes, with subsequent removal of polymer, are considered as a specific example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Notes

  1. Actually, since pores are distributed fairly nonuniformly [24], this relation is valid for only specific small areas with a close-to-constant n value.

  2. The model does not take into account the work on displacement of nanowire centroid with an increase or decrease in the degree of coalescence. On the assumption that this displacement does not exceed dhdL, one can show that this work, in view of wire nanosizes, is several orders of magnitude smaller than dEs.

REFERENCES

  1. A.S. Togonal, L. He, P. Roca i Cabarrocas, and Rusli, Langmuir 30, 10290 (2014).

    Article  Google Scholar 

  2. M. Tian, W. Wang, Y. Wei, and R. Yang, J. Power Sources 211, 46 (2012).

    Article  Google Scholar 

  3. X. Wu, Solid State Ionics 149, 185 (2002).

    Article  Google Scholar 

  4. V. M. Fedosyuk, Nanostructured Films and Nanowires (BGU, Minsk, 2006) [in Russian].

    Google Scholar 

  5. M. Vazquez, Magnetic Nano- and Microwires: Design, Synthesis, Properties and Applications (Woodhead, Cambridge, 2020).

    Google Scholar 

  6. A. E. Krasnok, I. S. Maksymov, A. I. Denisyuk, P. A. Belov, A. E. Miroshnichenko, K. R. Simovski, and Yu. S. Kivshar, Phys. Usp. 56, 539 (2013).

    Article  ADS  Google Scholar 

  7. V. I. Kukushkin, V. E. Kirpichev, E. N. Morozova, V. V. Solov’ev, and Ya. V. Fedotova, JETP Lett. 112, 31 (2020).

    Article  ADS  Google Scholar 

  8. K. V. Anikin, A. G. Milekhin, E. E. Rodyakina, S. L. Veber, A. V. Latyshev, and D. R. T. Zan, Sib. Fiz. Zh. 14, 63 (2019).

    Google Scholar 

  9. D. A. Cherkasov, D. L. Zagorskii, R. I. Khaibullin, A. E. Muslimova, and I. M. Doludenko, Phys. Solid State 62, 1695 (2020).

    Article  ADS  Google Scholar 

  10. D. L. Zagorskiy, K. V. Frolov, S. A. Bedin, I. V. Perunov, M. A. Chuev, A. A. Lomov, and I. M. Doludenko, Phys. Solid State 60, 2115 (2018).

    Article  ADS  Google Scholar 

  11. I. Yu. Eremchev, M. Yu. Eremchev, and A. V. Naumov, Phys. Usp. 62, 294 (2019).

    Article  ADS  Google Scholar 

  12. S. I. Kulik, I. Yu. Eremchev, P. Yu. Apel, D. L. Zagorski, and A. V. Naumov, J. Appl. Spectrosc. 85, 916 (2018).

    Article  ADS  Google Scholar 

  13. K. R. Karimullin, A. I. Arzhanov, I. Yu. Eremchev, A. V. Naumov, B. A. Kulnitskiy, and N. V. Surovtsev, Laser Phys. 29, 124009 (2019).

    Article  ADS  Google Scholar 

  14. A. G. Milekhin, S. A. Kuznetsov, L. L. Sveshnikova, T. A. Duda, I. A. Milekhin, E. E. Rodyakina, A. V. Latyshev, V. M. Dzhagan, and D. R. T. Zahn, J. Phys. Chem. C 121, 5779 (2017).

    Article  Google Scholar 

  15. S. J. Lee, A. R. Morrill, and M. Moskovits, J. Am. Chem. Soc. 128, 2200 (2006).

    Article  Google Scholar 

  16. M. S. Schmidt, J. Hubner, and A. Boisen, Adv. Mater. 24, OP11 (2012).

    Google Scholar 

  17. T. Qiu, X. L. Wu, J. C. Shen, P. C. T. Ha, and P. K. Chu, Nanotechnology 17, 5769 (2006).

    Article  ADS  Google Scholar 

  18. C. Zhu, G. Meng, P. Zheng, Q. Huang, Z. Li, X. Hu, X. Wang, Z. Huang, F. Li, and N. Wu, Adv. Mater. 28, 4871 (2016).

    Article  Google Scholar 

  19. E. P. Kozhina, S. A. Bedin, I. V. Razumovskaya, and A. V. Zalygin, J. Phys.: Conf. Ser. 1283 (2019).

  20. P. Apel, Rad. Meas. 34, 559 (2001).

    Article  Google Scholar 

  21. S. A. Bedin, O. G. Rybalko, N. B. Polyakov, D. L. Zagorskiy, I. V. Razumovskaya, G. G. Bondarenko, and V. A. Oleinikov, Inorg. Mater.: Appl. Res. 1, 359 (2010).

    Article  Google Scholar 

  22. Y. P. Zhao and J. G. Fan, Appl. Phys. Lett. 88, 103123 (2006).

    Article  ADS  Google Scholar 

  23. A. A. Griffith, Phil. Trans. R. Soc. London, Ser. A 221, 163 (1921).

    Article  ADS  Google Scholar 

  24. V. N. Gumirova, I. V. Razumovskaya, P. Yu. Apel’, S. A. Bedin, S. L. Bazhenov, and G. S. Abdurashidova, Prepodavatel’ XXI Vek 2, 207 (2013).

    Google Scholar 

  25. Ya. I. Frenkel’, Zh. Tekh. Fiz. 22, 1857 (1952).

    Google Scholar 

  26. I. N. Sneddon and D. S. Berry, The Classical Theory of Elasticity (Springer, Berlin, 1958).

    Google Scholar 

  27. G. M. Bartenev, I. V. Razumovskaya, and P. A. Rebinder, Kolloid. Zh. 20, 654 (1958).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.V. Naumov for helpful remarks.

Measurements were performed using equipment of the Shared Research Center of the Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences.

Funding

This study was performed within the State assignment for the Moscow Pedagogical State University on the subject “Physics of Nanostructured Materials: Fundamental Research and Applications in Materials Science, Nanotechnologies, and Photonics.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Razumovskaya.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razumovskaya, I.V., Kovalets, N.P., Bedin, S.A. et al. Agglomeration of Nanowires on a Substrate for Surface-Enhanced Raman Scattering. J. Exp. Theor. Phys. 132, 818–823 (2021). https://doi.org/10.1134/S1063776121050058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121050058

Navigation