Skip to main content
Log in

Impurity States in Semimagnetic Quantum Well Wire with Anisotropic Confinement along In-Plane Directions

  • ELECTRONIC PROPERTIES OF SOLID
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The effect of shape of the confining potential along two different confined directions in Quantum Well Wire (QWW) on the heavy hole binding energy bound to an acceptor impurity has been computed using variational principle in the envelope function and effective mass approximation. In order to elucidate the importance of choosing the material parameters like effective masses to get the reliable theoretical results since the effective masses play a crucial role in determining the carrier mobility especially in Quantum Wire structures, two different effective masses like constant effective mass which is isotropic and the directional dependent effective mass which is anisotropic, have been employed in solving the Schrödinger equation and the results have been compared. The shift in the Polaronic energy which arises due to the exchange interaction between the spin of the Mn2+ ion and the spin of the carrier has been computed by using mean field theory with modified Brillouin function. The observed results show that Quantum Size Effects are evidenced near the Wire size of ~30 Å and the binding energy is found to have enhanced values only for the case with isotropic effective mass than for the anisotropic effective mass. The magnetic tuning of the potential barrier leads to the probability for the quantum tunneling of the hole wavefunction into the barrier and thereby reduces the binding energy. The exchange interaction does not show its influence much on the Spin Polaronic Shift due to the competition between the square and parabolic confining potential in a QWW with such anisotropic confinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. S. Funk, M. Royo, I. Zardo, et al., Nano Lett. 13, 6189 (2013).

    Article  ADS  Google Scholar 

  2. S. K. Islam and F. C. Jain, Solid State Electron. 39, 615 (1996).

    Article  ADS  Google Scholar 

  3. K. A. Atlasov, M. Calic, K. F. Karlsson, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, Opt. Express 17, 18178 (2009).

    Article  ADS  Google Scholar 

  4. T. G. Kim, X.-L. Wang, R. Kaji, and M. Ogura, Phys. E (Amsterdam, Neth.) 7, 508 (2000).

  5. G. Liu and G. Zhou, J. Appl. Phys. 101, 063704 (2007).

    Article  ADS  Google Scholar 

  6. S. Gujarathi, K. M. Alam, and S. Pramanik, Phys. Rev. B 85, 045413 (2012).

    Article  ADS  Google Scholar 

  7. B. Mirek, M. Krol, et al., Phys. Rev. B 95, 085429 (2017).

    Article  ADS  Google Scholar 

  8. Yuan-Hui Zhu and Jian-Bai Xia, Phys. Rev. B 75, 205113 (2007).

    Article  ADS  Google Scholar 

  9. J. P. Lascaray, D. Coquillat, J. Deportes, and A. Bhattacharjee, Phys. Rev. B 38, 7602 (1988).

    Article  ADS  Google Scholar 

  10. P. Kalpana and K. Jayakumar, Phys. E (Amsterdam, Neth.) 93, 252 (2017).

  11. Y. Harada, T. Kita, O. Wada, and H. Ando, J. Appl. Phys. 107, 043521 (2010).

    Article  ADS  Google Scholar 

  12. J. Sun, W. E. Buhro, L.-W. Wang, and J. Schrier, Nano Lett. 8, 2913 (2008).

    Article  ADS  Google Scholar 

  13. Z. Ma, M. E. Jamer, E. Panaitescu, D. Heiman, and L. Menon, J. Magn. Magn. Mater. 394, 155 (2015).

    Article  ADS  Google Scholar 

  14. H. C. Jeon, T. W. Kang, T. W. Kim, Y.-J. Yu, W. Jhe, and S. A. Song, J. Appl. Phys. 101, 023508 (2007).

    Article  ADS  Google Scholar 

  15. Z. H. Chen, M. C. Debnath, K. Shibata, T. Saitou, T. Sato, and Y. Oka, J. Appl. Phys. 89, 6701 (2001).

    Article  ADS  Google Scholar 

  16. V. V. Val’kov and S. V. Aksenov, J. Magn. Magn. Mater. 440, 112 (2017).

    Article  ADS  Google Scholar 

  17. R. Khordada and H. Bahramiyan, J. Appl. Phys. 115, 124314 (2014).

    Article  ADS  Google Scholar 

  18. F. V. Kyrychenko and J. Kossut, Phys. Rev. B 61, 4449 (2000).

    Article  ADS  Google Scholar 

  19. K. Chang and F. M. Peeters, Phys. Rev. B 68, 205320 (2003).

    Article  ADS  Google Scholar 

  20. R. Khordad, A. Gharaati, and M. Haghparast, Curr. Appl. Phys. 10, 199 (2010).

    Article  ADS  Google Scholar 

  21. S. Gangopadhyay and B. R. Nag, J. Appl. Phys. 81, 7885 (1997).

    Article  ADS  Google Scholar 

  22. C. Raja Mohan and K. Jayakumar, J. Nano Electron. Phys. 3, 1005 (2011).

    Google Scholar 

  23. P. Kalpana, A. Merwyn Jasper, D. Reuben, P. Nithiananthi, and K. Jayakumar, AIP Conf. Proc. 1731, 090027 (2016).

    Article  Google Scholar 

  24. F. Long, W. E. Hagston, P. Harrison, and T. Stirner, J. Appl. Phys. 82, 3414 (1997).

    Article  ADS  Google Scholar 

  25. J. M. Luttinger, Phys. Rev. B 102, 1030 (1956).

    Article  ADS  Google Scholar 

  26. T. Friedrich, J. Kraus, G. Schaack, and W. O. G. Schmitt, J. Phys.: Condens. Matter 66, 4307 (1994).

    ADS  Google Scholar 

  27. Sr. Gerardin Jayam and K. Navaneethakrishnan, Int. J. Mod. Phys. B 16, 3737 (2002).

  28. J. A. Gaj and G. Fishman, Solid State Commun. 29, 435 (1979).

    Article  ADS  Google Scholar 

  29. P. Kalpana and K. Jayakumar, Superlatt. Microstruct. 111, 115 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Jayakumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalpana, P., Jayakumar, K. Impurity States in Semimagnetic Quantum Well Wire with Anisotropic Confinement along In-Plane Directions. J. Exp. Theor. Phys. 132, 824–830 (2021). https://doi.org/10.1134/S1063776121030031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121030031

Navigation