Skip to main content

Advertisement

Log in

Weathering patterns of the hard grey-striped limestone in the typical Mediterranean climate of northeastern Algeria at the Roman city of Djemila

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

The ancient ruins of Djemila, located in northeastern Algeria, represent the most important Roman archaeological site in North Africa. Originally named “Cuicul” in 96 or 97 A.D./C.E. when the Roman emperor Nerva built and established it as a Roman colony, Djemila (“beautiful” in Arabic) has been included on the UNESCO World Heritage list since 1982. The primary research objective at these ruins was to explain the major decay patterns observed, and the related processes affecting the hard grey-striped limestone widely used in the construction of the city. Mineralogical, petrophysical, and mechanical tests were performed on samples of this limestone collected from both the ancient city and the original quarry using different tools (XRD, XRF, SEM-EDX, etc.) and methods. Results obtained show that this stone has a high compressive strength with very low porosity and capillary absorption. The linear thermal coefficient showed a marked difference between the matrix and the veinlet of the same sampled stone. Hence, exposure over many centuries to strong climatic variations due to the typical Mediterranean climate of Northeastern Algeria naturally resulted in the characteristic yet spectacular decay patterns exhibited on the stone, namely cracks, fractures, contour scaling, large fragmentation, and delamination, as well as orange patina and lichens. The main effective parameters involved are temperature variations (thermal gradient), along with the wet–dry cycles resulting from climatic changes, and insolation decay due to the extreme radiant energy. These factors work in conjunction with the heterogeneity of the stone (presence of the calcite veinlets on the matrix) causing a fatigue phenomenon which, in turn, catalyzes deterioration patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Aalil I, Beck K, Brunetaud X, Cherkaoui K, Chaaba A, Al-Mukhtar M (2016) Deterioration analysis of building calcarenite stone in the House of Venus in the archaeological site of Volubilis (Morocco). Constr Build Mater 125:1127–1141

  • Anania L et al (2012) The stones in monumental masonry buildings of the “Val di Noto” area: New data on the relationships between petrographic characters and physical–mechanical properties. Constr Build Mater 33:122–132

  • Antonelli F, Lorenzo L, Cancelliere S, Dessandier D (2009) Volubilis (Meknes, Morocco): Archaeometric study of the white and coloured marbles imported in the Roman age. J Cult Herit 10:116–123

  • Antonelli F, Lorenzo L, Cancelliere S, Dessandier D (2010) On the white and coloured marbles of the Roman town of Cuicul (Djamila, Algeria). Archaeometry 52:575–596

  • Baldy C (1986) Comportement des blés dans les climats méditerranéens. Ecol Mediterr XII:73–88

  • Beck K (2006) Etude des propriétés hydriques et des mécanismes d'altération de pierres calcaires à forte porosité

  • Benavente D (2003) Garcı́a del Cura MA, Ordóñez S. Salt influence on evaporation from porous building rocks. Constr Build Mat 17:113–122

    Google Scholar 

  • Benosman G (2012) Migration de particules fines dans un milieux poreux: Application au phénomène de colmatage. Ecole Centrale Paris

  • Blas De Roblès J-M, Sintes C (2003) Sites et monuments antiques de l'Algérie. In: Achéologies E (ed) Sites et monuments antiques de l'Algérie 89–124

  • Buj O, Gisbert J (2010) Influence of pore morphology on the durability of sedimentary building stones from Aragon (Spain) subjected to standard salt decay tests. Environ Earth Sci 61:1327–1336

  • Caneva G, Lombardozzi V, Ceschin S, Casanova Municchia A, Salvadori O (2014) Unusual differential erosion related to the presence of endolithic microorganisms (Martvili, Georgia). J Cult Herit 15:538–545

  • Chourghal N, Lhomme JP, Huard F, Aidaoui A (2016) Climate change in Algeria and its impact on durum wheat. Reg Environ Change 16:1623–1634

    Google Scholar 

  • Delalieux F, Cardell C, Todorov V, Dekov V, Van Grieken R (2001) Environmental conditions controlling the chemical weathering of the Madara Horseman monument. NE Bulgaria J Cult Herit 2:43–54

    Article  Google Scholar 

  • Dessandier D, Antonelli F, Lazzarini L, Varti-Mataranges M, Leroux L, Hamiane M, Riache C, Khlfallah C (2009) An introductory study to the ornamental and building stones of the Djemila (Algeria) archaeological site. Paper presented at the Interdisciplinary Studies on Ancient Stone Proceedings of the IX Association for the Study of Marbles and Other Stones in Antiquity (ASMOSIA) Conference, Tarragona

  • El-Gohary M (2009) Experimental tests used for treatment of red weathering crusts in disintegrated granite – Egypt. J Cult Herit 10:471–479

  • El-Gohary M, Redwan M (2018) Alteration parameters affecting the Luxor Avenue of the Sphinxes-Egypt. Sci Total Environ 626:710–719

    Article  Google Scholar 

  • EN-1925 (1999) Méthodes d'essai pour pierres naturelles - Détermination du coefficient d'absorption d'eau par capillarité

  • EN-1926 (2007) Méthodes d'essai des pierres naturelles - Détermination des masses volumiques réelle et apparente et des porosités ouvertes et totale

  • EN-1936 (2007) Méthodes d'essai des pierres naturelles - Détermination des masses volumiques réelle et apparente et des porosités ouvertes et totale

  • EN-12572 (2001) Performance hygrothermique des matériaux et produits pour le bâtiment — Détermination des propriétés de transmission de la vapeur d'eau

  • EN-13755 (2008) Méthodes d'essai pour pierres naturelles - Détermination de l'absorption d'eau à la pression atmosphérique

  • EN-14581 (2005) Méthodes d'essai pour pierres naturelles - Détermination du coefficient linéaire de dilatation thermique

  • Ennabli A (2000) North Africa's Roman art. Its future World Heritage 16:18–29

  • Eppes MC, Griffing D (2010) Granular disintegration of marble in nature: A thermal-mechanical origin for a grus and corestone landscape. Geomorphology 117:170–180

    Article  Google Scholar 

  • Eslami J, Walbert C, Beaucour A-L, Bourges A, Noumowe A (2018) Influence of physical and mechanical properties on the durability of limestone subjected to freeze-thaw cycles. Constr Build Mater 162:420–429

    Article  Google Scholar 

  • Gómez-Heras M, Smith BJ, Fort R (2006) Surface temperature differences between minerals in crystalline rocks: Implications for granular disaggregation of granites through thermal fatigue. Geomorphology 78:236–249

    Article  Google Scholar 

  • Grøntoft T (2017) Conservation-restoration costs for limestone façades due to air pollution in Krakow. Poland, meeting European target values and expected climate change. Sustain Cities Soc 29:169–177

    Google Scholar 

  • Halsey DP, Mitchell DJ, Dews SJ (1998) Influence of climatically induced cycles in physical weathering. Q J Eng Geol Hydrogeol 31:359–367

    Article  Google Scholar 

  • Hammecker C (1993) Importance des transferts d’eau dans la dégradation des pierres en œuvre. University of Strasbourg

  • Harbi A, Maouche S, Ayadi A (1999) Neotectonics and associate seismicity in the Eastern Tellian Atlas of Algeria. J Seismol 3:95–104

    Article  Google Scholar 

  • Hassine MA, Beck K, Brunetaud X, Al-Mukhtar M (2018) Strain measurements during capillary water infiltration in porous limestones. Constr Build Mater 175:439–447

    Article  Google Scholar 

  • Hatheway AW (2009) The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring; 1974–2006. Environ Eng Geosci 15:47–48

  • Hirschwald J (1912) Andbuch der Bautechnischen Gesteins prufung Berlin: Borntraeger:642 pp

  • Hockman A, Kessler D (1950) Thermal and moisture expansion studies of some domestic granites. J Res Natl Bur Stand 44:395–410

    Article  Google Scholar 

  • Hossam I (2015) The Climate and Its Impacts on Egyptian Civilized Heritage: Ei-Nadura Temple in El- Kharga Oasis, Western Desert of Egypt As a Case Study P E S D 9:5–32 28–2015 2019:(2011)

  • ISRM (1981) Suggested methods: Rock characterization, testing, and monitoring. Committee on standardization of laboratory and field tests:211

  • Issam A, Kevin B, Xavier B, Dalal B, Khalid C, Ali C, Muzahim A-M (2017) Restoration mortars for the Volubilis calcarenite stone. Proc Struct Integr 5:1123–1128

    Article  Google Scholar 

  • Johnston B, McKinley J, Warke P (2019) Comparative investigation of the spatial distribution of past weathering impacts on sandstone masonry. Geomorphology 324:25–35

    Article  Google Scholar 

  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World Map of the Köppen-Geiger climate classification updated. Meteorol Z 15:259–263

    Article  Google Scholar 

  • Logan JM (2004) Laboratory and case studies of thermal cycling and stored strain on the stability of selected marbles Environ Geol 46:456–467

    Google Scholar 

  • Mertz J (1991) Structures de porosité et propriétés de transport dans les gres. University Louis Pasteur, Strasbourg

    Google Scholar 

  • Moses C, Robinson D, Barlow J (2014) Methods for measuring rock surface weathering and erosion: A Crit Rev Earth Sci Rev 135:141–161

    Google Scholar 

  • Nasri F, Boumezbeur A, Benavente D (2019) Influence of the petrophysical and durability properties of carbonate rocks on the deterioration of historic constructions in Tebessa (northeastern Algeria). B Eng Geol Environ 78:3969–3981

  • Ollier CD (1983) Weathering or hydrothermal alteration? CATENA 10:57–59

    Article  Google Scholar 

  • Ordóñez S, Fort R (1997) Garcia del Cura MA. Pore size distribution and the durability of a porous limestone. Q J Eng Geol Hydroge 30:221–230

    Google Scholar 

  • Pecchioni E, Fratini F, Pandeli E, Cantisani E, Vettori S (2020) Pietraforte, the Florentine building material from the Middle Ages to contemporary architecture. Ep J Int Geosci

  • Pokines JT et al (2018) The effects of repeated wet-dry cycles as a component of bone weathering. J Archaeol Sci 17:433–441

    Google Scholar 

  • Rampazzi L (2019) Calcium oxalate films on works of art: A review. J Cult Herit 40:195–214

    Article  Google Scholar 

  • Rosenholtz JL, Smith DT (1949) Linear thermal expansion of calcite, var. Iceland spar, and Yule marble Am Mineral 34:846–854

    Google Scholar 

  • Rozenbaum O, Barbanson L, Muller F, Bruand A (2008) Significance of a combined approach for replacement stones in the heritage buildings’ conservation frame. CR Geosci 340:345–355

    Google Scholar 

  • Schaffer RJ (1932) The weathering of natural building stones. Build Res Spec Rep 18. H.M.S.O, London

  • Siedel H, Pfefferkorn S, von Plehwe-Leisen E, Leisen H (2010) Sandstone weathering in tropical climate: Results of low-destructive investigations at the temple of Angkor Wat. Cambodia Eng Geol 115:182–192

    Article  Google Scholar 

  • Siegesmund S, Snethlage R (2014) Stone in Architecture. Properties, Durability, Edition Springer Verlag. edn. Springer-Verlag Berlin Heidelberg, Heidelberg, Germany

  • Siegesmund S, Ullemeyer K, Weiss T, Tschegg EK (2000) Physical weathering of marbles caused by anisotropic thermal expansion. International Journal of Earth Sciences 89:170–182

    Article  Google Scholar 

  • Smith BJ, Srinivasan S, Gomez-Heras M, Basheer PAM, Viles HA (2011) Near-surface temperature cycling of stone and its implications for scales of surface deterioration. Geomorphology 130:76–82

    Article  Google Scholar 

  • Smith BJ, Warke PA, McGreevy JP, Kane HL (2005) Salt-weathering simulations under hot desert conditions: agents of enlightenment or perpetuators of preconceptions? Geomorphology 67:211–227

    Article  Google Scholar 

  • Stambouli AB, Khiat Z, Flazi S, Kitamura Y (2012) A review on the renewable energy development in Algeria: Current perspective, energy scenario and sustainability issues. Renew Sust Energ Rev 16:4445–4460

  • Tating F, Hack R, Jetten V (2013) Engineering aspects and time effects of rapid deterioration of sandstone in the tropical environment of Sabah, Malaysia. Eng Geol 159:20–30

    Article  Google Scholar 

  • Thomachot C (2002) Modifications de propriétés pétrophysiques de grès soumis au gel ou recouverts" d'encroûtements noirs vernissés". Strasbourg 1

  • Ugur I, Sengun N, Demirdag S, Altindag R (2014) Analysis of the alterations in porosity features of some natural stones due to thermal effect. Ultrasonics 54:1332–1336

    Article  Google Scholar 

  • USDA, NRCS (2012) Chapter 4 : Engineering classification of rock Materials. Part 631 Geology-National Engineering Handbook 210-VI-NEH

  • Vázquez P, Alonso FJ, Carrizo L, Molina E, Cultrone G, Blanco M, Zamora I (2013) Evaluation of the petrophysical properties of sedimentary building stones in order to establish quality criteria. Constr Build Mater 41:868–878

    Article  Google Scholar 

  • Vergès-Belmin V (2008) Illustrated Glossary on Stone Deterioration Patterns = Glossaire illustré sur les formes d’altération de la pierre. In: ICOMOS (International Council on Monuments and Sites) and ISCS (International Scientific Committee for Stone) (ed) English-French Ed. Monuments & Sites

  • Warke PA (2013) 4.12 Weathering in Arid Regions. In: Shroder JF (ed) Treatise on Geomorphology. Academic Press, San Diego 197–227

    Chapter  Google Scholar 

  • Warscheid T, Braams J (2000) Biodeterioration of stone: a review. Int Biodeterior Biodegradation 46:343–368

    Article  Google Scholar 

  • Weiss T, Siegesmund S, Fuller ER (2003) Thermal degradation of marble: indications from finite-element modelling. Build Environ 38:1251–1260

    Article  Google Scholar 

  • Winkler EM (1966) Important agents of weathering for building and monumental stone. Eng Geol 1:381–400

    Article  Google Scholar 

  • Yoo S, Mito Y, Ueda A, Matsuoka T (2013) Geochemical clogging in fracture and porous rock for CO2 mineral trapping. Energy Proc 37:5612–5619

  • Zhang P, Nordlund E, Mainali G, Saiang C, Jansson R, Adl-Zarrabi B (2010) Experimental study on thermal spalling of rock blocks exposed to fire. In: Bergmekanikk i Norden 2010: Rock Mechanics in the Nordic Countries 2010 09/06/2010-12/06/2010 294–305

  • Zoghlami K, Martín-Martín JD, Gómez-Gras D, Navarro A, Parcerisa D, Rosell JR (2017) The building stone of the Roman city of Dougga (Tunisia): Provenance, petrophysical characterisation and durability. CR Geosci 349:402–411

Download references

Acknowledgements

The authors would like to thank the Algerian Ministry of Housing, Urban Planning and City Policy (MHUV). We would also like to thank all members of the University of M’hamed Bougara (UMBB, Boumerdes, Algeria), Department of Material Engineering, for their collaboration and help on the MEDISTONE project.

Funding

This study was financially supported by the MEDISTONE project (call FP6-2003-INCO-MPC-2, contract n°015245).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naïma Rabahi-Touloum.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabahi-Touloum, N., Brara, A. & Dessandier, D. Weathering patterns of the hard grey-striped limestone in the typical Mediterranean climate of northeastern Algeria at the Roman city of Djemila. Bull Eng Geol Environ 80, 6003–6022 (2021). https://doi.org/10.1007/s10064-021-02344-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-021-02344-w

Keywords

Navigation